Answer on the Question \#65735, Chemistry / Inorganic chemistry

The density of a wood is $0.79 \mathrm{~g} / \mathrm{cm} 3$. If the empirical formula of wood is CH 2 O . Calculate the mass of water produced when a \log of dimension $12 \mathrm{~cm} * 14 \mathrm{~cm} * 25 \mathrm{~cm}$ is burnt completely.

Solution:

Reaction of the wood combustion:

$$
\mathrm{CH}_{2} \mathrm{O}+\mathrm{O}_{2}=\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

The mass of the wood is a composition of the density and volume of the piece of wood:

$$
\begin{gathered}
m\left(\mathrm{CH}_{2} \mathrm{O}\right)=d\left(\mathrm{CH}_{2} \mathrm{O}\right) \cdot V\left(\mathrm{CH}_{2} \mathrm{O}\right) \\
V\left(\mathrm{CH}_{2} \mathrm{O}\right)=a \cdot b \cdot c=12 \mathrm{~cm} \cdot 14 \mathrm{~cm} \cdot 25 \mathrm{~cm}=4200 \mathrm{~cm}^{3} \\
m\left(\mathrm{CH}_{2} \mathrm{O}\right)=0.79 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}} \cdot 4200 \mathrm{~cm}^{3}=3318 \mathrm{~g}
\end{gathered}
$$

The mole number of the wood equal to the mole number of the water (by the reaction):

$$
\begin{gathered}
n\left(\mathrm{CH}_{2} \mathrm{O}\right)=n\left(\mathrm{H}_{2} \mathrm{O}\right) \\
n\left(\mathrm{CH}_{2} \mathrm{O}\right)=\frac{m\left(\mathrm{CH}_{2} \mathrm{O}\right)}{M\left(\mathrm{CH}_{2} \mathrm{O}\right)}=\frac{3318 \mathrm{~g}}{30 \mathrm{~g} / \mathrm{mol}}=110,6 \mathrm{~mol} \\
m\left(\mathrm{H}_{2} \mathrm{O}\right)=n\left(\mathrm{H}_{2} \mathrm{O}\right) \cdot M\left(\mathrm{H}_{2} \mathrm{O}\right)=110.6 \mathrm{~mol} \cdot 18 \frac{\mathrm{~g}}{\mathrm{~mol}}=1990.8 \mathrm{~g}
\end{gathered}
$$

Answer: the 1990.8 g of the water produced.

