Answer on the question \#65594, Chemistry / Other

Question:

1.) How much iron is present in 8.13 g of iron(III) oxide? Answer in units of g .
2.) A chemist wants to extract the gold from 62.21 g of $\mathrm{AuCl} 3 \cdot 2 \mathrm{H} 2 \mathrm{O}$ (gold(III) chloride dihydrate) by electrolysis of an aqueous solution. What mass of gold could be obtained from this sample? Answer in units of g.

3 (part 1 of 2) 10.0 points The molecular weight of erbium is $167.259 \mathrm{~g} / \mathrm{mol}$, sulfur is 32 . $065 \mathrm{~g} / \mathrm{mol}$, oxygen is $15.9994 \mathrm{~g} / \mathrm{mol}$, hydrogen is $1.00794 \mathrm{~g} / \mathrm{mol}$, carbon is 12.0107 $\mathrm{g} / \mathrm{mol}$, tin is $118.71 \mathrm{~g} / \mathrm{mol}$, and strontium is $87.62 \mathrm{~g} / \mathrm{mol}$. What is the percentage of C in glycerol? Answer in units of $\%$.

4 (part 2 of 2) 10.0 points What is the percentage of H in glycerol? Answer in units of $\%$.
5). 10.0 points What is the \% carbon, by weight, in a 0.166 g sample of C 2 H 6 ? Answer in units of $\%$.

Solution:

1) Iron (III) oxide formula is $\mathrm{Fe}_{2} \mathrm{O}_{3}$. Then, molar mass of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ is $159.69 \mathrm{~g} / \mathrm{mol}$. The number of the moles if $\mathrm{Fe}_{2} \mathrm{O}_{3}$ is:

$$
n\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)=\frac{m}{M}=\frac{62.21(\mathrm{~g})}{159.69\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)}=0.3896 \mathrm{~mol}
$$

The molar mass of iron is $55.845 \mathrm{~g} / \mathrm{mol}$. The number of the moles of iron and iron(III) oxide relate as:

$$
n\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)=\frac{n(\mathrm{Fe})}{2}
$$

Then, the mass of iron is:

$$
m(F e)=n \cdot M=0.3896(g) \cdot 2 \cdot 55.845\left(g^{m o l}{ }^{-1}\right)=43.51 \mathrm{~g}
$$

2) As it can be seen from formula, the number of the moles of gold (molar mass of 196.966569 $\mathrm{g} / \mathrm{mol}$) and gold chloride dihydrate (molar mass of $339.3561 \mathrm{~g} / \mathrm{mol}$) are equal. So, the mass of gold in the compound is:

$$
m(A u)=n \cdot M=\frac{62.21(g)}{339.3561\left(g ~ m o l^{-1}\right)} \cdot 196.966569\left({\left.\left.g \mathrm{~mol}^{-1}\right)=36.10(g)\right) ~(g)}\right.
$$

3) The formula of glycerol is $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}$, and the molar mass is $92.0938 \mathrm{~g} / \mathrm{mol}$. Also, we know that the molar mass of carbon is $12.0107 \mathrm{~g} / \mathrm{mol}$, and there are 3 atoms of carbon in one molecule of glycerol. Then, the mass percentage of carbon in glycerol is:

$$
\omega(C)=\frac{m(C)}{m\left(C_{3} H_{8} O_{3}\right)} \cdot 100 \%=\frac{3 M(C)}{M\left(C_{3} H_{8} O_{3}\right)} \cdot 100 \%=\frac{3 \cdot 12.0107\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)}{92.0938\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)} \cdot 100 \%
$$

$$
\omega(C)=39.1 \%
$$

4) The percentage of hydrogen in glycerol:

$$
\begin{gathered}
\omega(H)=\frac{m(H)}{m\left(C_{3} H_{8} O_{3}\right)} \cdot 100 \%=\frac{8 M(H)}{M\left(C_{3} H_{8} O_{3}\right)} \cdot 100 \%=\frac{8 \cdot 1.00794\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)}{92.0938\left(\mathrm{~g} \mathrm{~m} \mathrm{l}^{-1}\right)} \cdot 100 \% \\
\omega(H)=8.76 \%
\end{gathered}
$$

5) The mass percentage of carbon in $\mathrm{C}_{2} \mathrm{H}_{6}$ is:

$$
\begin{gathered}
\omega(C)=\frac{m(C)}{m\left(C_{2} H_{6}\right)} \cdot 100 \%=\frac{2 M(C)}{M\left(C_{2} H_{6}\right)} \cdot 100 \%=\frac{2 \cdot 12.0107\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)}{30.0690\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)} \cdot 100 \% \\
\omega(C)=79.9 \%
\end{gathered}
$$

Answer: 1) 43.51 g 2$) 36.10 \mathrm{~g} 3) 39.1 \% 4) 8.76 \%$ 5) 79.9%

