Answer on the Question #65310, Chemistry / General chemistry

If 250 mol of CO and 125 ml of H_2O gases are placed in 125 ml flask at 900 K, what is the concentration of each component at equilibrium? Kc=1.56

Solution:

Reaction between CO and H_2O at 900 K:

$$CO + H_2O \rightarrow CO_2 + H_2$$

Initial concentration of the reactants can be calculated by the following manner:

$$c_{reactant} = \frac{n_{reactant}}{V_{falsk}}$$

Results are present below:

Component	CO	H ₂ O	CO ₂	H ₂
Initial concentration, mol/l	2·10 ³	1·10 ³	0	0
Intermediate concentration, mol/l	-х	-Х	+x	+х
Equilibrium concentration, mol/l	2·10³-x	1·10³-x	x	x

Equilibrium constant of the reaction is a ratio between the composition of equilibrium concentrations of products and reactants. It is equal to:

$$K_{c} = \frac{[CO_{2}] \cdot [H_{2}]}{[CO] \cdot [H_{2}O]} = \frac{x \cdot x}{(2 \cdot 10^{3} - x) \cdot (1 \cdot 10^{3} - x)} = 1.56$$
$$0.56x^{2} - 4.7 \cdot 10^{3}x + 3.1 \cdot 10^{6} = 0$$
$$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a}$$
$$x_{1} = 0.73 \cdot 10^{3}$$
$$x_{2} = 7.6 \cdot 10^{3}$$

Solution of quadratic equation gives 2 positive answers. But x_2 can't be an adequate solution, because its value much more than initial concentration of reactants.

Answer:

Component	СО	H ₂ O	CO ₂	H ₂
Equilibrium		_	_	_
concentration, mol/l	$1.27 \cdot 10^{3}$	$0.27 \cdot 10^{3}$	$0.73 \cdot 10^{3}$	$0.73 \cdot 10^{3}$