## Answer on the Question \#65310, Chemistry / General chemistry

If 250 mol of CO and 125 ml of $\mathrm{H}_{2} \mathrm{O}$ gases are placed in 125 ml flask at 900 K , what is the concentration of each component at equilibrium? $\mathrm{Kc}=1.56$

## Solution:

Reaction between CO and $\mathrm{H}_{2} \mathrm{O}$ at 900 K :

$$
\mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2}
$$

Initial concentration of the reactants can be calculated by the following manner:

$$
c_{\text {reactant }}=\frac{n_{\text {reactant }}}{V_{\text {falsk }}}
$$

Results are present below:

| Component | CO | $\mathrm{H}_{2} \mathrm{O}$ | $\mathrm{CO}_{2}$ | $\mathrm{H}_{2}$ |
| :---: | :---: | :---: | :---: | :---: |
| Initial <br> concentration, <br> mol/l | $2 \cdot 10^{3}$ | $1 \cdot 10^{3}$ | 0 | 0 |
| Intermediate <br> concentration, <br> mol/l | -x | -x | +x | +x |
| Equilibrium <br> concentration, <br> mol/l | $2 \cdot 10^{3}-\mathrm{x}$ | $1 \cdot 10^{3}-\mathrm{x}$ | x | x |

Equilibrium constant of the reaction is a ratio between the composition of equilibrium concentrations of products and reactants. It is equal to:

$$
\begin{gathered}
K_{c}=\frac{\left[\mathrm{CO}_{2}\right] \cdot\left[\mathrm{H}_{2}\right]}{[\mathrm{CO}] \cdot\left[\mathrm{H}_{2} \mathrm{O}\right]}=\frac{x \cdot x}{\left(2 \cdot 10^{3}-x\right) \cdot\left(1 \cdot 10^{3}-x\right)}=1.56 \\
0.56 x^{2}-4.7 \cdot 10^{3} x+3.1 \cdot 10^{6}=0 \\
x_{1,2}=\frac{-b \pm \sqrt{D}}{2 a} \\
x_{1}=0.73 \cdot 10^{3} \\
x_{2}=7.6 \cdot 10^{3}
\end{gathered}
$$

Solution of quadratic equation gives 2 positive answers. But $x_{2}$ can't be an adequate solution, because its value much more than initial concentration of reactants.

## Answer:

| Component | CO | $\mathrm{H}_{2} \mathrm{O}$ | $\mathrm{CO}_{2}$ | $\mathrm{H}_{2}$ |
| :---: | :---: | :---: | :---: | :---: |
| Equilibrium <br> concentration, <br> mol/I | $1.27 \cdot 10^{3}$ | $0.27 \cdot 10^{3}$ | $0.73 \cdot 10^{3}$ | $0.73 \cdot 10^{3}$ |

