Answer on Question #65158 - Chemistry - Organic Chemistry

Task:

In a volume of 0.400 dm^3 of CH_2CL_2 there are $3.73*10^{24}$ molecules at 25 degree celsius. Calculate:

- (A) The density of the substance at 25 degree celsius, expressed in g.cm^3.
- (B) The number of atoms present in 425g of CH₂CL₂. (Solve by means of complete numerical development without omitting the statements or the units)

Solution:

Part (A):

We find the amount of CH₂Cl₂, using the following formula:

$$n = \frac{N}{N_a};$$

$$n(CH_2Cl_2) = \frac{N(CH_2Cl_2)}{N_a} = \frac{3.73 \times 10^{24}}{6.022 \times 10^{23}} = 6.194 \text{ (moles of } CH_2Cl_2\text{)}$$

We find the mass of CH₂Cl₂, using the following formula:

$$n = \frac{m}{M}; \implies m = n \times M$$

$$M(CH_2Cl_2) = 84.93 \frac{g}{mol}$$

$$m(CH_2Cl_2) = n(CH_2Cl_2) \times M(CH_2Cl_2);$$

$$m(CH_2Cl_2) = 6.194 \, mol \times 84.93 \frac{g}{mol} = 526.056 \, g$$

Convert dm3 in L:

$$1dm^{3} = 1L = 1000 \, mL = 1000 \, cm^{3};$$

$$0.400 \, dm^{3} = X \, mL;$$

$$X = V(CH_{2}Cl_{2}) = \frac{1000 \, cm^{3} \times 0.400 \, dm^{3}}{1 \, dm^{3}} = 400 \, cm^{3}$$

We find the density of the substance, using the following formula:

$$\rho = \frac{m}{V};$$

$$\rho(CH_2Cl_2) = \frac{m(CH_2Cl_2)}{V(CH_2Cl_2)} = \frac{526.056 g}{400 cm^3} = 1.31514 \frac{g}{cm^3}$$

Answer (A): The density of the substance is 1.31514 g*cm⁻³

Part (B):

We find the amount of CH₂Cl₂, using the following formula:

$$n = \frac{m}{M};$$

$$n(CH_2Cl_2) = \frac{m(CH_2Cl_2)}{M(CH_2Cl_2)} = \frac{425g}{84.938/mol} = 5.004 (moles of CH_2Cl_2)$$

We find the number molecules of $\mathrm{CH_2Cl_2}$, using the following formula:

$$n = \frac{N}{N_a}; \implies N = n \times N_a;$$

 $N(molecules) = n(CH_2Cl_2) \times N_a$;

 $N(molecules of CH_2Cl_2) = 5.004 \times 6.022 \times 10^{23} = 30.134 \times 10^{23}$

In molecule CH₂Cl₂ contains 5 atoms. Then,

$$N(atoms) = 5 \times N;$$

 $N(atoms \ of \ CH_2Cl_2) = 5 \times 30.134 \times 10^{23} = 1.5067 \times 10^{25}$

Answer (B): The number of atoms = $1.5067*10^{25}$.

Answer provided by AssignmentExpert.com