Question: If a water electrolysis cell operates at a current of 8.2 A , how long will it take to generate 27.0 L of hydrogen gas at a pressure of 25.0 atm and a temperature of $24{ }^{\circ} \mathrm{C}$?

Solution:

$\mathrm{I}=8.2 \mathrm{~A}$
$\mathrm{V}\left(\mathrm{H}_{2}\right)=27 \mathrm{~L}$
$\mathrm{P}=25.0 \mathrm{~atm}$
$\mathrm{T}=24^{\circ} \mathrm{C}=297 \mathrm{~K}$
R (gas constant) $=8.31\left(\mathrm{~J}=\mathrm{mol}^{-1} \times \mathrm{K}^{-1}\right)=0.0821\left(\mathrm{~L} \times \mathrm{atm} \times \mathrm{mol}^{-1} \times \mathrm{K}^{-1}\right)$
F (Faraday constant) $=96485 \mathrm{C} \times \mathrm{mol}^{-1}$
t- ?
n - ?
Using equation Mendeleev-Clapeyron find the number of moles of hydrogen gas:
$P \cdot V=n \cdot R \cdot T$
$n=\frac{P \cdot V}{R \cdot T}=\frac{25 \cdot 27}{0.0821 \cdot 297}=27.7 \mathrm{~mol}$
Using Faraday's law of electrolysis find time:
$I \cdot t=z \cdot n \cdot F$
$t=z \cdot n \cdot F \cdot I^{-1}=1 \cdot 27.7 \cdot 96485 \times 8.2^{-1}=$
$=325931 \mathrm{sec}=5432.2 \mathrm{~min}=90.5 \mathrm{~h}=3$ days 18 h 30 min
Answer: 90.5 hours $=3$ days 18 h 30 min

