Answer on Question \#64681, Chemistry / General Chemistry

How to calculate the concentration of free chlorine when 0.3 ml of $5 \% \mathrm{NaOCl}$ is added in 300 ml distilled water?

Solution:

The concentration of "free chlorine" $\mathrm{mg} / \mathrm{ml}$, calculated using the formula:

$$
C_{C l}=\frac{C_{\mathrm{NaOCl}} \times V_{\mathrm{NaOCl}} \times M_{E}\left(C l_{2}\right)}{V_{\mathrm{H}_{2} \mathrm{O}}}
$$

Where,
C_{Cl} - the concentration of chlorine ($\mathrm{mg} / \mathrm{ml}$);
C_{NaOCl} - the concentration of $\mathrm{NaOCl}(\mathrm{mol} / \mathrm{ml})$;
M_{E} - molar mass equivalent chlorine, $\mathrm{M}_{\mathrm{E}}\left(\mathrm{Cl}_{2}\right)=35,45(\mathrm{~g} / \mathrm{mol})$;
$V_{\mathrm{NaOCl}}-\mathrm{NaOCl}$ volume, ml ;
$V_{\mathrm{H}_{2} \mathrm{O}}$ - water volume, ml .
We turn to the mass fraction molarity:

$$
C_{\mathrm{NaOCl}}=\frac{1000 \rho \omega}{M}
$$

Where,
ρ - density of the solution in g / ml;
w - mass fraction of the solute;
M - molar mass of the solute, $\mathrm{g} / \mathrm{mol} . \mathrm{M}(\mathrm{NaOCl})=75 \mathrm{~g} / \mathrm{mol}$.

$$
C_{\mathrm{NaOCl}}=\frac{1000 \times 1.11 \frac{\mathrm{~g}}{\mathrm{ml}} \times 0.05}{74.44 \frac{\mathrm{~g}}{\mathrm{~mol}}}=0.75 \mathrm{~mol} / \mathrm{ml}
$$

Finally,

$$
C_{C l}=\frac{0.75 \frac{\mathrm{~mol}}{\mathrm{ml}} \times 0.3 \mathrm{ml} \times 35.45 \mathrm{~g} / \mathrm{mol}}{300 \mathrm{ml}}=26 \mathrm{mg} / \mathrm{ml}
$$

Answer: $\mathbf{2 6 ~ m g / m l}$
Answer provided by https://www.AssignmentExpert.com

