Question: Calculate the final temperature of 245 mL of water initially at $32^{\circ} \mathrm{C}$ upon absorption of 17 kJ of heat.

Solution:

$\mathrm{m}=\mathrm{V} \cdot \rho ;$
m (water) $=245 \mathrm{ml} \cdot 1 \frac{\mathrm{~g}}{\mathrm{ml}}=245 \mathrm{~g}$.
$17 \mathrm{~kJ}=17 \cdot 10^{3} \mathrm{~J}$.
The specific heat capacity of water is $c_{p}=4.18 \frac{\mathrm{~J}}{\mathrm{~g} \cdot{ }^{\circ} \mathrm{C}}$.
$q=m \cdot c_{p} \cdot \Delta T$, where q is quantity of heat.
$\Delta T=\frac{q}{m \cdot c_{p}}=\frac{17 \cdot 10^{3} \mathrm{~J}}{245 g \cdot 4.18 \frac{\mathrm{~J}}{g^{\circ} \mathrm{C}}}=16.6^{\circ} \mathrm{C} ;$
$\mathrm{T}_{\text {final }}=\mathrm{T}_{\text {initial }}+\Delta \mathrm{T}=32^{\circ} \mathrm{C}+16.6^{\circ} \mathrm{C}=48.6^{\circ} \mathrm{C}$.
Answer: The final temperature is $48.6^{\circ} \mathrm{C}$.

Answer provided by https://www.AssignmentExpert.com

