## Answer on the Question \#64161, Chemistry / Inorganic chemistry

calculate the concentration in $\mathrm{mol} / \mathrm{L}$, of a $20 \%(\mathrm{~m} / \mathrm{m})$ solution of sodium hydroxide that has a density of $1.43 \mathrm{~g} / \mathrm{ml}$

## Solution:

Assume, that volume of the solution is $100 \mathrm{ml}(\mathrm{V}=100 \mathrm{ml})$. Mass of solution equal to:

$$
m(\text { solution })=V \cdot d=100 \cdot 1.43=143 \mathrm{~g}
$$

Now we can find the mass of sodium hydroxide:

$$
m(\mathrm{NaOH})=\frac{m(\text { solution }) \cdot 20 \%}{100 \%}=\frac{143 \cdot 20 \%}{100 \%}=28.6 \mathrm{~g}
$$

Concentration of NaOH in solution equal to:

$$
c(\mathrm{NaOH})=\frac{m(\mathrm{NaOH}) \cdot 1000}{M(\mathrm{NaOH}) \cdot V}=\frac{28.6 \cdot 1000}{40 \cdot 100}=7.15 \frac{\mathrm{~mol}}{\mathrm{~L}}
$$

Answer: concentration of sodium hydroxide equal to $7.15 \mathrm{~mol} / \mathrm{L}$.
Answer provided by https://www.AssignmentExpert.com

