Question \#64116, Chemistry / Other

What will be the titration curve and pH for titrating 0.2 M acetic acid with 25 ml 0.2 M of NaOH .
Answer:
For the beginning you have only $\mathrm{CH}_{3} \mathrm{COOH}$ in the solution. Initial pH is a pH of the weak monoprotic acid solution:
$\mathrm{CH}_{3} \mathrm{COOH}=\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}$

$$
\begin{gathered}
K_{a}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{c_{0}-\left[\mathrm{H}^{+}\right]} \\
{\left[\mathrm{H}^{+}\right]^{2}+\left[\mathrm{H}^{+}\right] K_{a}-K_{a} c_{0}=0} \\
c_{0}=0.2 M \\
K_{a}=1.8 \times 10^{-5} \\
{\left[H^{+}\right]=1.89 \times 10^{-3}} \\
p H=-\log \left[H^{+}\right]=-\log 1.89 \times 10^{-3}=2.72
\end{gathered}
$$

Equivalence point at 25 mL . All acid converted to salt:
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH}=\mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}$
This salt undergoes hydrolysis:
$\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}=\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-}$

$$
\begin{gathered}
K_{b}=\frac{K_{w}}{K_{a}}=\frac{1.0 \times 10^{-14}}{1.8 \times 10^{-5}}=5.6 \times 10^{-10} \\
K_{a}=\frac{\left[\mathrm{OH}^{-}\right]^{2}}{c_{0}-\left[\mathrm{OH}^{-}\right]} \\
{\left[\mathrm{OH}^{-}\right]^{2}+\left[\mathrm{OH}^{-}\right] K_{b}-K_{b} c_{0}=0} \\
K_{b}=5.6 \times 10^{-10}
\end{gathered}
$$

Due to dilution:

$$
\begin{gathered}
c_{0}=0.1 \mathrm{M} \\
{\left[\mathrm{OH}^{-}\right]=7.48 \times 10^{-6}} \\
p O H=-\log \left[O H^{-}\right]=-\log 7.48 \times 10^{-6}=5.13 \\
p H=14-p O H=14-5.13=8.87
\end{gathered}
$$

Before equivalence point pH will rise slowly, at equivalence point - sharp increase, after again slow growth:

Answer provided by https://www.AssignmentExpert.com

