Answer on the Question \#63813, Chemistry / General chemistry

Use the Acid-Base Table to determine the pKa of the weak acid H2O. Express your answer to two decimal places.
$\mathrm{pKa}=$ \qquad

Solution:

Dissociation of the weak acid like water occurs by the following reaction:

$$
H_{2} O_{(a q)}=O H_{(a q)}^{-}+H_{(a q)}^{+}
$$

The law of mass action for this equation would be expressed as:

$$
K_{a}=\frac{a_{O H^{-}} \cdot a_{H^{+}}}{a_{H_{2} \mathrm{O}}}=\frac{\left[\mathrm{OH}^{-}\right] \cdot\left[\mathrm{H}^{+}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]}
$$

The product of $\left[\mathrm{OH}^{-}\right] \cdot\left[\mathrm{H}^{+}\right]=1 \cdot 10^{-14}$ and concentration of water $\left[\mathrm{H}_{2} \mathrm{O}\right]=55.33 \mathrm{M}$, thus

$$
K_{a}=\frac{1 \cdot 10^{-14}}{55.33}=2 \cdot 10^{-16}
$$

Therefore:

$$
p K_{a}=-\log \left(K_{a}\right)=-\log \left(2 \cdot 10^{-16}\right)=15.69
$$

Answer: $\mathrm{pKa}=15.69$

