Question \#63709, Chemistry / Other

A constant current was passed through a solution of $\mathrm{AuCl}_{4}{ }^{-}$ions between gold electrodes. After a period of 10.00 minutes the cathode increased in weight by 1.314 grams .how much charge was passed and what was the current I?

Solution:

Faraday's laws can be summarized by

$$
\begin{gathered}
m=\frac{Q}{F} \frac{M}{Z} \\
Q=I t
\end{gathered}
$$

m is the mass of the substance liberated at an electrode in grams Q is the total electric charge passed through the substance in coulombs $F=96485 \mathrm{C} \mathrm{mol}-1$ is the Faraday constant
M is the molar mass of the substance in grams per mol z is the valency number of ions of the substance (electrons transferred per ion).

$$
Q=\frac{m F z}{M}
$$

$\mathrm{AuCl}_{4}{ }^{-}$ions $-\mathrm{Au}^{+3}$ reduses to $\mathrm{Au}^{0} . \mathrm{z}=3$. $\mathrm{M}(\mathrm{Au})=196.967 \mathrm{~g} / \mathrm{mol}$

$$
\begin{gathered}
Q=\frac{1.314 \mathrm{~g} \times 96485 \mathrm{C} / \mathrm{mol} \times 3}{196.967 \mathrm{~g} / \mathrm{mol}}=1931.0 \mathrm{C} \\
Q=I t \\
I=\frac{Q}{t}=\frac{1931.0}{600 \mathrm{~s}}=3.22 \mathrm{~A}
\end{gathered}
$$

https://www.AssignmentExpert.com

