Answer on Question \#63569-Chemistry - Other

Task:

What is the maximum mass of S_{8} that can be produced by combining 90.0 g of each reactant? $8 \mathrm{SO}_{2}+16 \mathrm{H}_{2} \mathrm{~S}$ 口 $3 \mathrm{~S}_{8}+16 \mathrm{H}_{2} \mathrm{O}$

Solution:

We can convert the masses of SO_{2} and $\mathrm{H}_{2} \mathrm{~S}$ to moles using molecular weights:
moles of $\mathrm{SO}_{2}=90.0 \mathrm{~g} \times \frac{1 \mathrm{~mol} \mathrm{SO}_{2}}{64.054 \mathrm{~g} \mathrm{SO}_{2}}=1.405 \mathrm{~mol} \mathrm{SO}_{2}$;
moles of $\mathrm{H}_{2} \mathrm{~S}=90.0 \mathrm{~g} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S}}{34.082 \mathrm{~g} \mathrm{H}_{2} \mathrm{~S}}=2.6407 \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S}$;

We calculate the actual molar ratio of the reactants, and then compare the actual ratio to the stoichiometric ratio from the balanced reaction.

Actual ratio $=\frac{\text { moles of } \mathrm{H}_{2} \mathrm{~S}}{\text { moles of } \mathrm{SO}_{2}}=\frac{2.6407 \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S}}{1.405 \mathrm{~mol} \mathrm{SO}_{2}}=\frac{1.8795 \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S}}{1 \mathrm{~mol} \mathrm{SO}_{2}}$

The actual ratio tells us that we have 1.8795 mol of $\mathrm{H}_{2} \mathrm{~S}$ for every 1 mol of SO_{2}. In comparison, the stoichiometric ratio from our balanced reaction is below:

Stoichiometric ratio $=\frac{16 \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S}}{8 \mathrm{~mol} \mathrm{SO}_{2}}=\frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S}}{1 \mathrm{~mol} \mathrm{SO}_{2}}$

This means we need at least 2 moles of $\mathrm{H}_{2} \mathrm{~S}$ for every mole of SO_{2}. Since our actual ratio is smaller than our stoichiometric ratio, we have less $\mathrm{H}_{2} \mathrm{~S}$ than we need to react with each mole of SO_{2}. Therefore, $\mathrm{H}_{2} \mathrm{~S}$ is our limiting reagent and SO_{2} is in excess.

Then,
max imum mass of $S_{8}=\frac{3 \mathrm{~mol}_{8} \times 256.472 \mathrm{~g} \mathrm{~S}}{8} \times 90.0 \mathrm{~g} \mathrm{H} \mathrm{H}_{2} \mathrm{~S} \times 1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S}\left(126.987 \mathrm{~g} \mathrm{~S}_{8} \approx 127 \mathrm{~g} \mathrm{~S} \mathrm{~S}_{8}\right.$.

Answer: 127 g is the maximum mass of S_{8}.

