Answer on Question #63569 - Chemistry - Other

Task:

What is the maximum mass of S_8 that can be produced by combining 90.0 g of each reactant? 8SO₂+16H₂S \square 3S₈+16H₂O

Solution:

We can convert the masses of SO_2 and H_2S to moles using molecular weights:

$$moles of SO_{2} = 90.0g \times \frac{1mol SO_{2}}{64.054g SO_{2}} = 1.405 mol SO_{2};$$

$$moles of H_{2}S = 90.0g \times \frac{1mol H_{2}S}{34.082g H_{2}S} = 2.6407 mol H_{2}S;$$

We calculate the actual molar ratio of the reactants, and then compare the actual ratio to the stoichiometric ratio from the balanced reaction.

$$Actual \ ratio = \frac{moles \ of \ H_2 S}{moles \ of \ SO_2} = \frac{2.6407 \ mol \ H_2 S}{1.405 \ mol \ SO_2} = \frac{1.8795 \ mol \ H_2 S}{1 \ mol \ SO_2}$$

The actual ratio tells us that we have 1.8795 mol of H_2S for every 1 mol of SO_2 . In comparison, the stoichiometric ratio from our balanced reaction is below:

Stoichiometric ratio =
$$\frac{16 \mod H_2 S}{8 \mod SO_2} = \frac{2 \mod H_2 S}{1 \mod SO_2}$$

This means we need at least 2 moles of H_2S for every mole of SO_2 . Since our actual ratio is smaller than our stoichiometric ratio, we have less H_2S than we need to react with each mole of SO_2 . Therefore, H_2S is our limiting reagent and SO_2 is in excess.

Then,

$$\max imum \ mass of \ S_8 = \frac{3 \ mol \ S_8 \times 256.472 \ g \ S_8 \times 90.0 \ g \ H_2 S \times 1 \ mol \ H_2 S}{1 \ mol \ S_8 \times 16 \ mol \ H_2 S \times 34.082 \ g \ H_2 S} = 126.987 \ g \ S_8 \approx 127 \ g \ S_8.$$

Answer: 127 g is the maximum mass of S₈.