Answer on Question \#63427, Chemistry / General Chemistry

Chapter 15 (15.74)

A sample of nitrosyl bromide (NOBr) decomposes according to the equation $2 \mathrm{NOBr}(\mathrm{g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{Br} 2(\mathrm{~g})$
An equilibrium mixture in a $5.00-\mathrm{L}$ vessel at $100{ }^{\circ} \mathrm{C}$ contains 3.27 g of NOBr, 3.09 g of NO, and 8.23 g of Br 2 .

1) Calculate Kc.
2) What is the total pressure exerted by the mixture of gases?
3) What was the mass of the original sample of NOBr ?

Solution:

1) Moles $=$ Mass/Mol.mass

Moles $\mathrm{NOBr}=3.27 \mathrm{~g} / 109.8 \mathrm{~g} / \mathrm{mol}=0.0298 \mathrm{~mol} \mathrm{NOBr}$
Moles NO $=3.09 \mathrm{~g} / 29.9 \mathrm{~g} / \mathrm{mol}=0.1033 \mathrm{~mol}$ NO
Moles $\mathrm{Br} 2=8.23 \mathrm{~g} / 159.9 \mathrm{~g} / \mathrm{mol}=0.0515 \mathrm{~mol} \mathrm{Br} 2$
Concentration of $\mathrm{NOBr}=0.0298 \mathrm{~mol} / 5.00 \mathrm{~L}=0.00596 \mathrm{~mol} / \mathrm{L}$
Concentration of NO $=0.1033 \mathrm{~mol} / 5.00 \mathrm{~L}=0.02066 \mathrm{~mol} / \mathrm{L}$
Concentration of $\mathrm{Br} 2=0.0515 \mathrm{~mol} / 5.00 \mathrm{~L}=0.0103 \mathrm{~mol} / \mathrm{L}$
Kc for the equation $=[\mathrm{NO}]^{\wedge} 2 *[\mathrm{Br} 2] /[\mathrm{NOBr}]^{\wedge} 2$
$\mathrm{Kc}=[0.02066 \mathrm{~mol} / \mathrm{L}]^{\wedge} 2 *[0.0103 \mathrm{~mol} / \mathrm{L}] /[0.00596 \mathrm{~mol} / \mathrm{L}]^{\wedge} 2=17.6 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$
2) Use the ideal gas equation $P V=n R T$
$\mathrm{P}=\mathrm{nRT} / \mathrm{V}$
$\mathrm{n}=0.0298 \mathrm{~mol}+0.1033 \mathrm{~mol}+0.0515 \mathrm{~mol}=0.1846 \mathrm{~mol}$
$\mathrm{T}=100+273=373 \mathrm{~K}$
$\mathrm{P}=0.1846 \mathrm{~mol} \times 373 \mathrm{~K} \times 8.3 \mathrm{~J} / \mathrm{molK} / 0.005 \mathrm{~m}^{3}=114300.6 \mathrm{~Pa}=857.3$ Tor
3) We use conservation of mass
$\mathrm{m}(\mathrm{NOBr})=3.27 \mathrm{~g}+3.09 \mathrm{~g}+8.23 \mathrm{~g}=14.59 \mathrm{~g}$
Answer: 1) $17.6 \times 10^{-3} \mathrm{~mol} / \mathrm{L} ;$ 2) 857.3 Tor; 3) 14.59 g

