Answer on Question\#63312 - Chemistry - Inorganic chemistry

Question: Suppose 0.917 g of sodium chloride is dissolved in $100 . \mathrm{mL}$ of a 54.0 mM aqueous solution of silver nitrate. Calculate the final molarity of chloride anion in the solution. You can assume the volume of the solution doesn't change when the sodium chloride is dissolved in it. Round your answer to 3 significant digits

Solution:

$\mathrm{n}(\mathrm{NaCl})=\frac{\mathrm{m}(\mathrm{NaCl})}{\mathrm{M}(\mathrm{NaCl})}=\frac{0.917 \mathrm{~g}}{58.5 \mathrm{~g} / \mathrm{mol}}=0.0157 \mathrm{~mol}$
V (solution) $=100 \mathrm{~mL}=0.1 \mathrm{~L}$
$\mathrm{C}\left(\mathrm{AgNO}_{3}\right)=54.0 \mathrm{mM}=0.054 \mathrm{M}=0.054 \mathrm{~mol} / \mathrm{L}$
$\mathrm{n}\left(\mathrm{AgNO}_{3}\right)=\mathrm{C}\left(\mathrm{AgNO}_{3}\right) \times \mathrm{V}($ solution $)=0.054 \frac{\mathrm{~mol}}{\mathrm{~L}} \times 0.1 \mathrm{~L}=0.0054 \mathrm{~mol}$

$$
\mathrm{AgNO}_{3}+\mathrm{NaCl}=\mathrm{AgCl} \downarrow+\mathrm{NaNO}_{3}
$$

$\mathrm{n}(\mathrm{NaCl}$ excess $)=0.0157 \mathrm{~mol}-0.0054 \mathrm{~mol}=0.0103 \mathrm{~mol}$
$\mathrm{C}\left(\mathrm{Cl}^{-}\right)=\mathrm{C}(\mathrm{NaCl}$ excess $)=\frac{\mathrm{n}(\mathrm{NaCl} \text { excess })}{\mathrm{V}(\text { solution })}=\frac{0.0103 \mathrm{~mol}}{0.1 \mathrm{~L}}=0.103 \frac{\mathrm{~mol}}{\mathrm{~L}}=0.103 \mathrm{M}$
Answer: 0.103M.

