Chapter 13 (13.107)

At ordinary body temperature (37°C), the solubility of N_2 in water at ordinary atmospheric pressure (1.0 atm) is 0.015 g/L. Air is approximately 78 mol % N_2 .

- 1) Calculate the number of moles of N₂ dissolved per liter of blood, assuming blood is a simple aqueous solution.
- 2) At a depth of 100 ft in water, the external pressure is 4.0 atm. What is the solubility of N₂ from air in blood at this pressure?
- 3) If a scuba diver suddenly surfaces from this depth, how many milliliters of N₂ gas, in the form of tiny bubbles, are released into the bloodstream from each liter of blood?

Answer:

a. $0.015 \text{ g/L} \cdot (1 \text{ mol } N_2/28 \text{ g} N_2) = \text{about } 0.5.36\text{E-4 M}$

b. k = p/c $XN_2 = 0.78$ atm from the problem. $XN_2 = pN_2/P_{total}$ $0.78 \cdot 1$ atm = $pN_2 = 0.78$ atm k = p/c = 0.78/5.36E-4 = 1455.

At 100 ft the P_{total} = 4.0 atm. Then $pN_2 = XN_2 \cdot Ptotal = 0.78 \cdot 4.0$ atm = 3.12 atm. $c = pN_2/k = 3.12/1455 = 0.002$ M.

c. Take the difference in moles in a liter at the two parts of the problem. 2E-3- 5.36E-4 = 0.0015 moles N₂ for each liter. PV = nRT 1 atm \cdot V = 0.0015 \cdot 0.082 L atm K⁻¹ mol⁻¹ \cdot (37 + 273) V= (0.0015 \cdot 0.082 \cdot (37 + 273))/1 atm = 0.038 L N₂ per liter of blood = 38 ml N₂ per liter of blood.