Chapter 13 (13.107)

At ordinary body temperature $\left(37^{\circ} \mathrm{C}\right)$, the solubility of N_{2} in water at ordinary atmospheric pressure (1.0 atm) is $0.015 \mathrm{~g} / \mathrm{L}$. Air is approximately $78 \mathrm{~mol} \% \mathbf{N}_{2}$.

1) Calculate the number of moles of \mathbf{N}_{2} dissolved per liter of blood, assuming blood is a simple aqueous solution.
2) At a depth of 100 ft in water, the external pressure is 4.0 atm. What is the solubility of N_{2} from air in blood at this pressure?
3) If a scuba diver suddenly surfaces from this depth, how many milliliters of $\mathbf{N}_{\mathbf{2}}$ gas, in the form of tiny bubbles, are released into the bloodstream from each liter of blood?

Answer:

a. $\quad 0.015 \mathrm{~g} / \mathrm{L} \cdot(1 \mathrm{~mol} \mathrm{~N} / 28 \mathrm{~g} \mathrm{~N} 2)=$ about $0.5 .36 \mathrm{E}-4 \mathrm{M}$
b. $k=p / c$
$X N_{2}=0.78$ atm from the problem.
$\mathrm{XN}_{2}=\mathrm{pN} \mathrm{N}_{2} / \mathrm{P}_{\text {total }}$
$0.78 \cdot 1 \mathrm{~atm}=\mathrm{pN}_{2}=0.78 \mathrm{~atm}$
$\mathrm{k}=\mathrm{p} / \mathrm{c}=0.78 / 5.36 \mathrm{E}-4=1455$.

At 100 ft the $\mathrm{P}_{\text {total }}=4.0 \mathrm{~atm}$.
Then $\mathrm{pN}_{2}=\mathrm{XN}_{2} \cdot$ Ptotal $=0.78 \cdot 4.0 \mathrm{~atm}=3.12 \mathrm{~atm}$.
$\mathrm{c}=\mathrm{pN} / \mathrm{k}=3.12 / 1455=0.002 \mathrm{M}$.
c. Take the difference in moles in a liter at the two parts of the problem.
$2 \mathrm{E}-3-5.36 \mathrm{E}-4=0.0015$ moles N_{2} for each liter.
$P V=n R T$
$1 \mathrm{~atm} \cdot \mathrm{~V}=0.0015 \cdot 0.082 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \cdot(37+273)$
$V=(0.0015 \cdot 0.082 \cdot(37+273)) / 1 \mathrm{~atm}=0.038 \mathrm{~L} \mathrm{~N} 2$ per liter of blood $=38 \mathrm{ml} \mathrm{N}_{2}$ per liter of blood.

