Answer on the question \#63249, Chemistry / General Chemistry

Question:

Chapter 13 (13.93)

Fish need at least 4 ppm dissolved O 2 for survival.

1) What is this concentration in $\mathrm{mol} / \mathrm{L}$?
2)What partial pressure of $O 2$ above the water is needed to obtain this concentration at 10 ${ }^{\circ} \mathrm{C}$? (The Henry's law constant for O 2 at this temperature is $1.71 \times 10-3 \mathrm{~mol} / \mathrm{L} \cdot \mathrm{atm}$.)

Solution:

1) 4 ppm of O_{2} means that there are 4 molecules of $\mathrm{O}_{2}\left(\mathrm{~N}_{\mathrm{O}_{2}}\right)$ per million molecules of water ($N_{\mathrm{H}_{2} \mathrm{O}}$):

$$
\operatorname{ppm}\left(O_{2}\right)=\frac{N_{O_{2}}}{N_{\mathrm{H}_{2} \mathrm{O}}} \cdot 10^{6}=\frac{n_{O_{2}}}{n_{\mathrm{H}_{2} \mathrm{O}}} \cdot 10^{6}=\frac{n_{O_{2}} \cdot M_{\mathrm{H}_{2} \mathrm{O}}}{d_{\mathrm{H}_{2} \mathrm{O}} \cdot V_{\mathrm{H}_{2} \mathrm{O}}} \cdot 10^{6}=c_{O_{2}} \frac{M_{\mathrm{H}_{2} \mathrm{O}}}{d_{\mathrm{H}_{2} \mathrm{O}}} \cdot 10^{6}
$$

where $n_{\mathrm{O}_{2}}$ and $n_{\mathrm{H}_{2} \mathrm{O}}$ are the number of the moles of oxygen and water, respectively ;
$M_{\mathrm{H}_{2} \mathrm{O}}$ and $d_{\mathrm{H}_{2} \mathrm{O}}$ are molar mass and density of water, respectively.
We deduce the concentration of oxygen in water then :

$$
c_{O_{2}}=\frac{d_{\mathrm{H}_{2} \mathrm{O}} \cdot \operatorname{ppm}\left(\mathrm{O}_{2}\right)}{M_{\mathrm{H}_{2} \mathrm{O}} \cdot 10^{6}}=\frac{1000\left(\mathrm{~g} \mathrm{~L}^{-1}\right) \cdot 4(\mathrm{ppm})}{18.01528\left(\mathrm{~g} \mathrm{~mol}^{-1}\right) \cdot 10^{6}}=2.22 \cdot 10^{-4}\left(\mathrm{~mol} \mathrm{~L}^{-1}\right)
$$

2) Henry solubility is:

$$
\begin{gathered}
H_{s}=\frac{c}{p} \\
p=\frac{c}{H_{s}}=\frac{2.22 \cdot 10^{-4}\left(\mathrm{~mol} \mathrm{~L}^{-1}\right)}{1.71 \cdot 10^{-3}\left(\mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~atm}^{-1}\right)}=0.13(\mathrm{~atm})
\end{gathered}
$$

Answer : 1) $2.22 \cdot 10^{-4}\left(\mathrm{~mol} \mathrm{~L}^{-1}\right)$, 2) $0.13(\mathrm{~atm})$

