Ammonia is prepared industrially by the reaction of nitrogen and hydrogen according to the following equation. If 29.7 g of $\mathbf{N} 2$ is added to 3.31 g of H 2 , which reactant is the limiting reactant and how much ammonia (NH3) is formed?

Solution

$$
\begin{aligned}
& v\left(N_{2}\right)=\frac{29.7 \mathrm{~g}}{28 \mathrm{~g} / \mathrm{mol}}=1.06 \mathrm{~mol} \\
& v\left(\mathrm{H}_{2}\right)=\frac{3.31 \mathrm{~g}}{2 \mathrm{~g} / \mathrm{mol}}=1.66 \mathrm{~mol}
\end{aligned}
$$

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2}=2 \mathrm{NH}_{3}
$$

According to the reaction, we need 3 moles of H_{2} for every mole of N_{2}. Therefore, we need 3.18 moles of H_{2} to react with N_{2} given. Therefore, H_{2} is the limiting reagent.

$$
\begin{gathered}
v\left(\mathrm{NH}_{3}\right)=1.66 \mathrm{~mol} \times \frac{2}{3} \approx 1.1 \mathrm{~mol} \\
m\left(\mathrm{NH}_{3}\right)=1.1 \mathrm{~mol} \times 17.03 \frac{\mathrm{~g}}{\mathrm{~mol}}=18.78 \mathrm{~g}
\end{gathered}
$$

Answer: H2 is the limiting reagent; 18.78 h of ammonia is formed.

