Answer on Question \#62987-Chemistry | General Chemistry

Nitric oxide is made from the oxidation of ammonia. What mass of nitric oxide can be made from the reaction of 8.171 g NH 3 with 17.33 g O 2 ?

$$
4 \mathrm{NH}_{3(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 4 \mathrm{NO}_{(\mathrm{g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

Solution

$\mathrm{m}\left(\mathrm{NH}_{3}\right)=8.171(\mathrm{~g})$
$\mathrm{M}\left(\mathrm{NH}_{3}\right)=17.031(\mathrm{~g} / \mathrm{mol})$
$\mathrm{m}\left(\mathrm{O}_{2}\right)=17.33(\mathrm{~g})$
$\mathrm{M}\left(\mathrm{O}_{2}\right)=32(\mathrm{~g} / \mathrm{mol})$
$\mathrm{M}(\mathrm{NO})=30.01(\mathrm{~g} / \mathrm{mol})$
Molar ratios are: $\mathrm{NH}_{3}: \mathrm{O}_{2}: \mathrm{NO}: \mathrm{H}_{2} \mathrm{O}:: 4: 5: 4: 6$
$\mathrm{n}\left(\mathrm{NH}_{3}\right)=\frac{m}{M}=\frac{8.171 \mathrm{~g}}{17.031 \mathrm{~g} / \mathrm{mol}}=0.48 \mathrm{~mol}$.
$\mathrm{n}\left(\mathrm{O}_{2}\right)=\frac{m}{M}=\frac{17.33 \mathrm{~g}}{32 \mathrm{~g} / \mathrm{mol}}=0.54 \mathrm{~mol}$.
As ammonia is in the smaller ratio it is the limiting reagent. Oxygen is in excess.
So,
$\mathrm{n}(\mathrm{NO})=0.48 \cdot \frac{4}{4}=0.48 \mathrm{~mol}$
$m=n \cdot M=0.48 \mathrm{~mol} \cdot 30.01 \mathrm{~g} / \mathrm{mol}=14.4 \mathrm{~g}$

Answer

$m(N O)=14.4 g$

