Answer on Question \#62985-Chemistry - General Chemistry

Question:

You wish to make a 0.404 M hydrochloric acid solution from a stock solution of 6.00 M hydrochloric acid. How much concentrated acid must you add to obtain a total volume of 50.0 mL of the dilute solution?

Solution:

I propose two ways - one more formal, another one is more like "rule of a thumb". You choose what is more appropriate.

1) Find how much acid should be in the final solution and then find the volume of initial solution containing that amount of acid:
0.404 M solution means that 1 L of solution contains 0.404 moles of acid. Then 50.0 mL $(0.0500 \mathrm{~L})$ of such solution contains $(0.0500 \mathrm{~L} / 1 \mathrm{~L}) * 0.404 \mathrm{~mol}=0.0202$ moles.
Find amount of stock solution containing 0.0202 moles of acid:
1 L of 6.00 M solution contains 6.00 moles of acid. Then 0.0202 moles is in $\mathbf{0 . 0 2 0 2}$ moles $/ 6.00$ moles) $* 1 \mathrm{~L}=0.0034 \mathrm{~L}=3.4 \mathrm{~mL}$.
2) There is simple rule of diluting - ratio of volumes of initial (0) and final (1) solution is opposite to the ratio of molar concentrations: V0/V1 $=\mathrm{M} 1 / \mathrm{M} 0$. From here $\mathrm{V} 0=\mathrm{V} 1 *$ M1/M0. Units do not matter; important is to have the same units in initial and final systems.
Calculate: $\mathrm{VO}=50.0 \mathrm{~mL}$ * $(0.404 \mathrm{M} / 6.00 \mathrm{M})=3.4 \mathrm{~mL}$

Answer:

To obtain a total volume of 50.0 mL of the dilute solution you have to take 3.4 ml of stock solution.

