Answer on Question \#62394-Chemistry - General Chemistry

Question:

Problem 4.111 (Chapter 4)

The average concentration of gold in seawater is 100 fM (femtomolar).
1)Given that the price of gold is $\$ 1764.20$ per troy ounce (1 troy ounce $=31.103 \mathrm{~g}$), how many liters of seawater would you need to process to collect $\$ 6000$ worth of gold, assuming your processing technique captures only 50% of the gold present in the samples?

Solution:

1) Let's find the target amount of gold to collect: if price of gold is $\$ 1764.20$ per troy ounce than we need $\$ 6000 / \$ 1764.20$ per troy ounce $=3.4$ troy ounces.
Convert to grams: 3.4 troy ounces * $31.103 \mathrm{~g} /$ ounce $=105.750 \mathrm{~g}$
2) Considering the yield of processing to be 50%, we need amount of seawater containing $(105.750 \mathrm{~g} / 50 \%)^{*} 100 \%=211.500 \mathrm{~g}$ of gold for processing
3) Calculate concentration of gold in seawater in g / L : "femto-" means 10^{-15} multiplier. So we have $100^{*} 10^{-15} \mathrm{~mol} / \mathrm{L}$ or $1^{*} 10^{-13} \mathrm{~mol} / \mathrm{L}$ of gold. Atomic weight of gold is 197 , so 1 mole of gold is 197 g .
Convert $\mathrm{mol} / \mathrm{L}$ to $\mathrm{g} / \mathrm{L}: 1^{*} 10^{-13} \mathrm{~mol} / \mathrm{L}=197 * 1^{*} 10^{-13} \mathrm{~g} / \mathrm{L}=1.97^{*} 10^{-11} \mathrm{~g} / \mathrm{L}$
4) Calculate necessary amount of seawater: $211.5 \mathrm{~g} /\left(1.97^{*} 10^{-11} \mathrm{~g} / \mathrm{L}\right)=107^{*} 10^{11} \mathrm{~L}=$ 1.07*1013 L

Answer:

We need to process $1.07 * 10^{13} \mathrm{~L}$ of seawater

