Answer on Question \#62392, Chemistry / General Chemistry

Problem 3.84 (Chapter 4)

The distinctive odor of vinegar is due to acetic acid, CH 3 COOH , which reacts with sodium hydroxide in the following fashion:
$\mathrm{CH} 3 \mathrm{COOH}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{H} 2 \mathrm{O}(\mathrm{I})+\mathrm{NaC} 2 \mathrm{H} 3 \mathrm{O} 2(\mathrm{aq})$

1) If 3.50 mL of vinegar needs 45.0 mL of 0.110 M NaOH to reach the equivalence point in a titration, how many grams of acetic acid are in a 1.90 qt sample of this vinegar?

Solution:

0.045 liters $\times 0.110 \mathrm{M}=0.00495$ moles of NaOH
0.00495 moles of $\mathrm{NaOH}=0.00495$ moles of acetic acid

1 quart $=32 \mathrm{fl} \mathrm{oz}$
$1 \mathrm{fl} \mathrm{oz}=29.57 \mathrm{~mL}$
1.90 quarts $\times 32 \mathrm{fl} \mathrm{oz} / \mathrm{qt} \times 29.57 \mathrm{~mL} / \mathrm{fl} \mathrm{oz}=1797.9 \mathrm{~mL}$
0.00495 moles $/ 3.50 \mathrm{~mL}=1.414 \times 10^{-3} \mathrm{moles} / \mathrm{mL}$
$1.414 \times 10^{-3} \mathrm{~mol} / \mathrm{mL} \times 1.7979 \times 10^{3} \mathrm{~mL}=2.54 \mathrm{~mol}$
$2.54 \mathrm{~mol} \times 60.05 \mathrm{~g} / \mathrm{mol}=152.5 \mathrm{~g}$
152.5 g CH 3 COOH per 1.90 quarts

Answer: 152.5 g

