Answer on the question \#62391, Chemistry / General Chemistry

Question:

Problem 4.115 (Chapter 4)
Federal regulations set an upper limit of 50 parts per million (ppm) of NH3 in the air in a work environment [that is, 50 molecules of $\mathrm{NH} 3(\mathrm{~g})$ for every million molecules in the air]. Air from a manufacturing operation was drawn through a solution containing 106 mL of $1.13 \times 10-2 \mathrm{M}$ HCl . The NH 3 reacts with HCl as follows: $\mathrm{NH} 3(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{NH} 4 \mathrm{Cl}(\mathrm{aq})$ After drawing air through the acid solution for 10.0 min at a rate of $10.0 \mathrm{~L} / \mathrm{min}$, the acid was titrated. The remaining acid needed 14.5 mL of $5.86 \times 10-2 \mathrm{M} \mathrm{NaOH}$ to reach the equivalence point.
1)How many grams of NH3 were drawn into the acid solution?
2)How many ppm of NH3 were in the air? (Air has a density of $1.20 \mathrm{~g} / \mathrm{L}$ and an average molar mass of $29.0 \mathrm{~g} / \mathrm{mol}$ under the conditions of the experiment.)
3)Is this manufacturer in compliance with regulations?

Solution:

The reactions occur during the process:

$$
\mathrm{NH}_{3(a q)}+\mathrm{HCl}_{(a q)} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}_{(a q)}
$$

and during the titration:

$$
\mathrm{HCl}_{(a q)}+\mathrm{NaOH}_{(a q)} \rightarrow \mathrm{NaCl}_{(a q)}+\mathrm{H}_{2} \mathrm{O}
$$

1) Let's calculate the number of the moles of chloric acid, remained in the solution and reacted with sodium hydroxide:

$$
\begin{aligned}
n(\mathrm{HCl})_{\text {titration }} & =n(\mathrm{NaOH})=c(\mathrm{NaOH}) \cdot V(\mathrm{NaOH})=5.86 \cdot 10^{-2}(\mathrm{M}) \cdot 14.5 \cdot 10^{-3}(\mathrm{~L}) \\
& =8.497 \cdot 10^{-4} \mathrm{~mol}
\end{aligned}
$$

Then, the number of the moles of chloric acid that was used in reaction with NH_{3} is:

$$
\begin{aligned}
& n(\mathrm{HCl})_{t o t}=n(\mathrm{HCl})_{\text {titration }}+n(\mathrm{HCl})_{N H_{3}} \\
& n(\mathrm{HCl})_{N H_{3}}=n(\mathrm{HCl})_{\text {tot }}-n(\mathrm{HCl})_{\text {titration }} \\
n(\mathrm{HCl})_{N H_{3}}= & c(\mathrm{HCl}) \cdot V(\mathrm{HCl})-n(\mathrm{HCl})_{\text {titration }} \\
& =1.13 \cdot 10^{-2}(\mathrm{M}) \cdot 106 \cdot 10^{-3}(\mathrm{~L})-8.497 \cdot 10^{-4}(\mathrm{~mol}) \\
& =3.481 \cdot 10^{-4}(\mathrm{~mol})
\end{aligned}
$$

The number of the moles of NH_{3} is equal to the number of the moles of HCl used for NH_{3} trap:

$$
n(\mathrm{HCl})_{\mathrm{NH}_{3}}=n\left(\mathrm{NH}_{3}\right)
$$

So, we simply multiply the number of the moles of NH 3 by its molar mass to get the mass of NH3:

$$
m\left(\mathrm{NH}_{3}\right)=n\left(\mathrm{NH}_{3}\right) \cdot M\left(\mathrm{NH}_{3}\right)=3.481 \cdot 10^{-4}(\mathrm{~mol}) \cdot 17.031\left(\frac{g}{\mathrm{~mol}}\right)=5.929 \cdot 10^{-3}(\mathrm{~g})
$$

2) The formula to calculate the ppm of NH 3 in the air is:

$$
\left(\mathrm{NH}_{3}\right)_{p p m}=\frac{n\left(\mathrm{NH}_{3}\right)}{n(\text { air })} \cdot 10^{6}
$$

The number of the moles of air can be calculated this way: first, we calculate the volume of air passed through HCl solution:

$$
V_{a i r}=v \cdot t
$$

where v is the rate $10.0 \mathrm{~L} / \mathrm{min}$, and t is the time, 10 min .

$$
V_{\text {air }}=10\left(\frac{L}{\min }\right) \cdot 10(\min)=100 L
$$

Then, we can get the mass and number of the moles of air:

$$
\begin{gathered}
m_{\text {air }}=V_{\text {air }} \cdot d_{\text {air }}=100(L) \cdot 1.20\left(\frac{g}{L}\right)=120 \mathrm{~g} \\
n_{\text {air }}=\frac{m_{\text {air }}}{M_{\text {air }}}=\frac{120(\mathrm{~g})}{29.0\left(\frac{\mathrm{~g}}{\mathrm{~mol}}\right)}=4.14 \mathrm{~mol}
\end{gathered}
$$

So then, ppm of ammonia is:

$$
\left(\mathrm{NH}_{3}\right)_{p p m}=\frac{n\left(\mathrm{NH}_{3}\right)}{n(\text { air })} \cdot 10^{6}=\frac{3.481 \cdot 10^{-4}(\mathrm{~mol})}{4.14(\mathrm{~mol})} \cdot 10^{6}=84 \mathrm{ppm}
$$

3) As 84 ppm is $>50 \mathrm{ppm}$, then the manufacturer is not in compliance with regulations.

Answer:

1) $5.929 \cdot 10^{-3}(g)$
2) 84 ppm
3) no, he is not.
