Answer on Question \#62387-Chemistry - General Chemistry

Question

When hydrocarbons are burned in a limited amount of air, both CO and CO_{2} form. When 0.410 g
 were formed.

1) How many grams of O_{2} were used in the reaction?
2) How many grams would have been required for complete combustion?

Solution:

1) Using the Low of conversation of mass:
$m\left(\mathrm{C}_{x} \mathrm{H}_{\mathrm{y}}\right)+\mathrm{m}\left(\mathrm{O}_{2}\right)=\mathrm{m}(\mathrm{CO})+m\left(\mathrm{CO}_{2}\right)+m\left(\mathrm{H}_{2} \mathrm{O}\right)$
$\mathrm{m}\left(\mathrm{O}_{2}\right)=\mathrm{m}(\mathrm{CO})+\mathrm{m}\left(\mathrm{CO}_{2}\right)+\mathrm{m}\left(\mathrm{H}_{2} \mathrm{O}\right)-\mathrm{m}\left(\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}\right)=0.425+0.668+0.410-0.410=1.093(\mathrm{~g})$
2) If we want to complete combustion, we need to oxidize CO to CO_{2}
$2 \mathrm{CO}+\mathrm{O}_{2}=2 \mathrm{CO}_{2}$
$m_{\text {add }}\left(\mathrm{O}_{2}\right)=\mathrm{M}\left(\mathrm{O}_{2}\right) \cdot \vartheta\left(\mathrm{O}_{2}\right)=\mathrm{M}\left(\mathrm{O}_{2}\right) \cdot \vartheta(\mathrm{CO}) / 2=\mathrm{M}\left(\mathrm{O}_{2}\right) \cdot \frac{\mathrm{m}(\mathrm{CO})}{2 \mathrm{M}(\mathrm{CO})}=32 \cdot \frac{0.425}{2 \cdot 28}=0.243(\mathrm{~g})$
$\mathrm{m}_{\text {total }}\left(\mathrm{O}_{2}\right)=\mathrm{m}\left(\mathrm{O}_{2}\right)+\mathrm{m}_{\text {add }}\left(\mathrm{O}_{2}\right)=1.093+0.243=1.336(\mathrm{~g})$
Answer: 1) $\mathrm{m}\left(\mathrm{O}_{2}\right)=1.093(\mathrm{~g})$ were used in the reaction
3) $\mathrm{m}\left(\mathrm{O}_{2}\right)=1.336(\mathrm{~g})$ would have been required for complete combustion
