Answer on Question \#62385, Chemistry / General Chemistry

Problem 2.20 (Chapter 2)
An atom of rhodium (Rh) has a diameter of about $2.7 \times 10^{-8} \mathrm{~cm}$.

1) What is the radius of a rhodium atom in angstroms (\AA)?
2) How many Rh atoms would have to be placed side by side to span a distance of $3.5 \mu \mathrm{~m}$?
3) If the atom is assumed to be a sphere, what is the volume in m^{3} of a single Rh atom?

Solution:

(1)

An Angstrom is a unit of length: $1 \AA=1.0 \times 10^{-10} \mathrm{~m}$. Since the radius is one-half the diameter, in Angstroms we have

$$
r=\frac{2.7 \cdot 10^{-8} \mathrm{~cm}}{2} \times\left(\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right) \times\left(\frac{1 \AA}{1.0 \cdot 10^{-10} \mathrm{~m}}\right)=1.4 \AA
$$

(2)

Let's assume that the atoms are actually touching each other. If one Rh atom has a diameter of $2.7 \times 10^{-8} \mathrm{~cm}$, then we can use our units to find how many Rh atoms we have per cm (or m):

$$
\frac{1 \text { Rh_atom }}{2.7 \cdot 10^{-8} \mathrm{~cm}} \times\left(\frac{100 \mathrm{~cm}}{1 \mathrm{~m}}\right)=3.7 \cdot 10^{9} \frac{\text { Rh_atom }}{m}
$$

So we can fit $3.7 \times 10^{9} \mathrm{Rh}$ atoms in a meter. Now, it's just a unit problem.. $1 \mu \mathrm{~m}=1.0 \times 10^{-6} \mathrm{~m}$

$$
3.7 \cdot 10^{9} \frac{R h _ \text {atom }}{m} \times\left(\frac{1.0 \cdot 10^{-6} \mathrm{~m}}{1 \mu m}\right) \times 3.5 \mu \mathrm{~m}=1.3 \cdot 10^{4} \mathrm{Rh} \text { _atom }
$$

(3)

The formula for volume of a sphere is $\mathrm{V}=4 \mathrm{pr}^{3} / 3$; the diameter is twice the radius, so in meter units,

$$
V=\frac{4 \pi \times\left(1.4 \cdot 10^{-10} \mathrm{~m}\right)^{3}}{3}=1.15 \cdot 10^{-29} \mathrm{~m}^{3}
$$

Answer: (1) $1.4 \AA$ A ; (2) $1.3 \cdot 10^{4}$ Rh_atom; (3) $1.15 \cdot \mathbf{1 0}^{-29} \mathrm{~m}^{3}$

