Answer on question \#62345, Chemistry / Inorganic Chemistry

The transition from $\mathrm{J}=0$ to $\mathrm{J}^{\prime}=1$ for HCl takes place at $21.18 \mathrm{~cm}^{-1}$. Calculate the bond length for 1 H 35 Cl .

Solution:

The dependence of the rotational constant on bond length, R_{o} :

$$
\tilde{B}_{0}=\frac{\hbar}{4 \pi c I}
$$

Where the moment of inertia $\mathrm{I}=\mu \mathrm{R}^{2}$ o for a diatomic molecule.

$$
\tilde{B}_{0}=\frac{\hbar}{4 \pi \mu c R_{0}{ }^{2}}
$$

Where $\mu=\mathrm{m} 1 \mathrm{~m} 2 / \mathrm{m} 1+\mathrm{m} 2$
$\mathrm{m}_{1}(\mathrm{H})=1.008 \mathrm{amu}$
$\mathrm{m}_{2}(\mathrm{Cl})=35.453 \mathrm{amu}$

$$
\mu=\frac{1.008 \mathrm{amu} \times 35.453 \mathrm{amu}}{1.008 \mathrm{amu}+35.453 \mathrm{amu}}=0.980 \mathrm{amu}
$$

Then

$$
R_{0}=\sqrt{\frac{\hbar}{4 \pi \mu c \tilde{B}_{0}}}
$$

You need the units in kg , so you multiply by the constant, $1.66 \cdot 10^{-27} \mathrm{~kg} / \mathrm{amu}$.
Finally

$$
\begin{gathered}
R_{0}=\sqrt{\frac{1.0546 \cdot 10^{-34} \mathrm{Js}}{4 \pi \times 0.980 \mathrm{amu} \times 1.66 \cdot 10^{-27} \frac{\mathrm{~kg}}{\mathrm{amu}} \times 3 \cdot 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} \times 2118 \mathrm{~m}^{-1}}}=9.01 \cdot 10^{-11 \mathrm{~m}} \\
R_{0}=90.1 \mathrm{pm}
\end{gathered}
$$

Answer: 90.1 pm

