Question \#61546, Economics, Other

4.90 g of KClO_{3} on heating shows a weight loss of 0.384 g . What percentage of the original KClO_{3} has decomposed.

Answer:

$2 \mathrm{KClO}_{3} \rightarrow$ heat $\rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$
$2 \mathrm{~mol}_{\mathrm{KClO}_{3}}$ produce $3 \mathrm{~mol} \mathrm{O}_{2}$
The 0.384 g mass loss was due to the oxygen generated.

The amount of moles of oxygen generated can be calculated as:
Molar mass $\mathrm{O}_{2}=32 \mathrm{~g} / \mathrm{mol}$
$0.384 \mathrm{~g} \mathrm{O}_{2}=0.384 / 32=0.012 \mathrm{~mol} \mathrm{O}_{2}$ generated

This came from the decomposition of $0.012 \cdot 2 / 3=0.008 \mathrm{~mol}^{2} \mathrm{KClO}_{3}$
Molar mass $\mathrm{KClO}_{3}=122.55 \mathrm{~g} / \mathrm{mol}$
$0.008 \mathrm{~mol} \mathrm{KClO}_{3}=0.008 \cdot 122.55=0.9804 \mathrm{~g} \mathrm{KClO}_{3}$ decomposed
$\%$ of original sample: $0.9804 / 4.90 \cdot 100=20.0 \%$

