Strontium Hydride solid reacts with water to form strontium hydroxide and hydrogen gas: $\mathrm{SrH} 2(\mathrm{~s})+\mathrm{H} 2 \mathrm{O}(\mathrm{L})->\mathrm{Sr}(\mathrm{OH}) 2(\mathrm{~s})+\mathrm{H} 2(\mathrm{~g})$.
How many grams of H 2 O and SrH 2 are required to produce 500 grams of $\mathrm{Sr}(\mathrm{OH}) 2$? Also, find the volume of hydrogen gas that will be produced from the reaction? Assume the condition is at STP.

Solution:

$$
\begin{aligned}
& \mathrm{SrH}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~L})->\mathrm{Sr}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{H}_{2}(\mathrm{~g}) \\
& \mathrm{M}\left(\mathrm{SrH}_{2}\right)=89.6 \mathrm{~g} / \mathrm{mol} ; \\
&\left.M\left(\mathrm{H}_{2} \mathrm{O}\right)=18 \times 2=36 \mathrm{~g} / \mathrm{mol} \text { (because } 2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}\right) . ; \\
& M\left(\mathrm{Sr}(\mathrm{OH})_{2}\right)=121.6 \mathrm{~g} / \mathrm{mol} ; \\
&\left.M\left(\mathrm{H}_{2}\right)=2 \times 2=4 \mathrm{~g} / \mathrm{mol} \text { (because } 2 \mathrm{~mol} \mathrm{H}_{2}\right) .
\end{aligned}
$$

We draw up proportion:

$$
\mathrm{x}(\mathrm{~g}): 89.6(\mathrm{~g} / \mathrm{mol})=500(\mathrm{~g}): 121,6(\mathrm{~g} / \mathrm{mol})
$$

Where x - the mass of SrH_{2}.

$$
x=\frac{89.6\left(\frac{\mathrm{~g}}{\mathrm{~mol}}\right) \times 500(\mathrm{~g})}{121.6\left(\frac{\mathrm{~g}}{\mathrm{~mol}}\right)}=368.42 \mathrm{~g}
$$

$$
\mathrm{m}\left(\mathrm{SrH}_{2}\right)=368.42(\mathrm{~g})
$$

$$
x(\mathrm{~g}): 36(\mathrm{~g} / \mathrm{mol})=500(\mathrm{~g}): 121.6(\mathrm{~g} / \mathrm{mol})
$$

Where x - the mass of $\mathrm{H}_{2} \mathrm{O}$.

$$
x=\frac{36\left(\frac{\mathrm{~g}}{\mathrm{~mol}}\right) \times 500(\mathrm{~g})}{121.6\left(\frac{\mathrm{~g}}{\mathrm{~mol}}\right)}=148.02 \mathrm{~g}
$$

$$
\mathrm{m}\left(\mathrm{H}_{2} \mathrm{O}\right)=148.02(\mathrm{~g}) .
$$

We find how many grams of H_{2} can be produced in the reaction.
Using the limiting reactant's value of SrH_{2}, because of $\mathrm{H}_{2} \mathrm{O}$ can produce a larger quantity of H_{2} than of SrH_{2}

$$
x=\frac{4\left(\frac{\mathrm{~g}}{\mathrm{~mol}}\right) \times 368.33(\mathrm{~g})}{89.6\left(\frac{\mathrm{~g}}{\mathrm{~mol}}\right)}=16.44 \mathrm{~g}
$$

Find the volume of H_{2}.

Mass of 1 mole of hydrogen is 2 g . One mole of any gas will occupy a volume of 22.4 liters at STP.

We draw up proportion:
$2(\mathrm{~g}): 22.4(\mathrm{~L})=16.44(\mathrm{~g}): x(\mathrm{~L})$,
Where x - the volume of H_{2}.

$$
x=\frac{22.4(\mathrm{~L}) \times 16.44(\mathrm{~g})}{2(\mathrm{~g})}=184.128 L
$$

$V\left(H_{2}\right)=184.128(\mathrm{~L})$.
Answer: $\mathrm{m}\left(\mathrm{SrH}_{2}\right)=368.42(\mathrm{~g}) ; \mathrm{m}\left(\mathrm{H}_{2} \mathrm{O}\right)=148.02(\mathrm{~g}) ; \mathrm{V}\left(\mathrm{H}_{2}\right)=184.128(\mathrm{~L})$

