Answer on Question \#61135, Chemistry / General Chemistry

Conditions: I am planning to make a dilution of CO2 into several concentrations (400ppm to 1000ppm) from purified air cylinder and purified carbon dioxide cylinder in a 2 L dilute flask. My idea is using the ideal gas law, $\mathrm{PV}=\mathrm{nRT}$, so since R and T is constant, I am having problems to get the value of P from the CO 2 and the air.Does the P value comes from the pressure of gas in the cylinder or, should I set the P to certain value?Also, for the purified air it is made of 21% oxygen and 79% nitrogen, I am confused to how to calculate the num of mole.

Solution:

Density of $\operatorname{Air}\left(20^{\circ} \mathrm{C}\right)=1.2 \mathrm{~kg} / \mathrm{m}^{3}$
N2 75,5\% by weight in Air
O2 23,15\% by weight in Air
For 1L of Air $m(N 2)=1.2 \mathrm{~g}^{*} 75,5 \%=0.906 ; \mathrm{n}(\mathrm{O} 2)=1,2 / 28=0.0324(\mathrm{~mol})$
For 1L of Air $m(O 2)=1.2 \mathrm{~g}^{*} 23.15 \%=0.278 ; \mathrm{n}(\mathrm{O} 2)=1,2 \beta 2=0.0086(\mathrm{~mol})$
You can get value of P from this $P V=n R T$, look at this P of air 101.325 kPa at $T=293.15 \mathrm{~K}$ or $20^{\circ} \mathrm{C}$.

The initial pressure CO 2 is $\mathrm{P}=\mathrm{nRT} / \mathrm{V}$. If you know the concentration of CO 2 you can calculate $\mathrm{n}(\mathrm{CO} 2)$.

If you don't know $\mathrm{n}(\mathrm{CO} 2)$. You need to weight flask with CO 2
$m=m($ flask $)+m(\mathrm{CO} 2)=>m(\mathrm{CO} 2)=m-m($ flask $) . n(\mathrm{CO} 2)=m(\mathrm{CO} 2) / 44(\mathrm{~g} / \mathrm{mol})$.
Answer:1) $n(N 2)=0.0324(\mathrm{~mol})$
2) $\mathrm{N}(\mathrm{O} 2)=0.0086(\mathrm{~mol})$
3) $\quad P_{\text {air }}=101.325 \mathrm{kPa}\left(\right.$ at $\left.20^{\circ} \mathrm{C}\right)$
4) $\quad P(C O 2)=n R T / V$

