Question \#60984 - Chemistry - General Chemistry

Question:

Carbon dioxide reacts with hot carbon in the form of graphite. The equilibrium constant, , for the reaction is 10.0 at $850 .{ }^{\circ} \mathrm{C}$. $\mathrm{CO} 2 \quad(\mathrm{~g}) \quad+\quad \mathrm{C}$ (graphite) -----> $2 \mathrm{CO} \quad$ (g) If 13.5 g of carbon monoxide is placed in a $2.50-\mathrm{L}$ graphite container and heated to $850 .{ }^{\circ} \mathrm{C}$, what is the mass of carbon dioxide at equilibrium?

Solution:

$\mathrm{Kp}=\left(\mathrm{P}_{\mathrm{CO}}\right)^{2} / \mathrm{P}_{\mathrm{CO} 2}$
$\mathrm{n}(\mathrm{CO})=13.5 \mathrm{~g} / 28 \mathrm{~g} / \mathrm{mol}=0.482 \mathrm{~mol}$
In equilibrium $n(C O)=0.482-x, n(C O 2)=x$.
Ideal gas law:
$\mathrm{PV}=\mathrm{nRT}$
$\mathrm{P}(\mathrm{CO})=\mathrm{n}(\mathrm{CO}) * \mathrm{RT} / \mathrm{V}$
$\mathrm{Kp}=(\mathrm{RT} / \mathrm{V}) *(0.482-\mathrm{x})^{2} / \mathrm{x}=(0.082 *(850+273) / 2.5) *(0.482-\mathrm{x})^{2} / \mathrm{x}=10$ barr
$\mathrm{x}=0.231 \mathrm{~mol}$
$\mathrm{m}\left(\mathrm{CO}_{2}\right)=0.231 \mathrm{~mol} * 44 \mathrm{~g} / \mathrm{mol}=10.2 \mathrm{~g}$

Answer: $\mathrm{m}\left(\mathrm{CO}_{2}\right)=10.2 \mathrm{~g}$

