Answer on Question \#60911, Chemistry / General Chemistry

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ is prepared in the lab by dissolving 3.6 g in 1 L of the solution. In a titration of this acid with an aqueous solution of $\mathrm{NaOH}, 25 \mathrm{~mL}$ of the acid required 12.15 mL of a 0.100 M aqueous NaOH solution for complete neutralization. What are the moles of NaOH required to completely react with $\mathbf{2 5}$ ML of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$?

Solution:

The molar mass of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ is equal to $74,08 \mathrm{~g} / \mathrm{mol} .1 \mathrm{l}$ of solution contains $3,6 \mathrm{~g}$ of CH 3 CH 2 COOH that there correspond $3,6 / 74,08=0,0486 \mathrm{~mol}$ of acid. Then in 25 ml of solution $0,001215 \mathrm{~mol}$ of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ contain $0,0486 \cdot 25 / 1000=$.

At titration of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ reaction happens NaOH solution:
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}$
According to the equation of reaction, 1 mol of acid reacts with 1 mol of NaOH . Then neutralization of $0,001215 \mathrm{~mol}$ of CH 3 CH 2 COOH requires 0,001215 mol of NaOH .

In $12: 15 \mathrm{ml} 0.100 \mathrm{M} \mathrm{NaOH}$ solutions contain
$12,15 \cdot 0,100 / 1000=0,001215 \mathrm{~mol}$ of NaOH

Answer: 0,001215 moles of NaOH .

