Question \#60810, Chemistry, General Chemistry

A balloon containing 0.0400 mol of a gas with a volume of 500 mL was expanded to 1.00 L .
Answer the questions and round answers to nearest hundredth place.
Which equation should you use to find the amount of gas added?

Answer:

The equation ruling ideal gas behavior is Clapeyron equation:

$$
p V=n R T
$$

$\mathrm{R}=0.082 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{K} \cdot \mathrm{mol}$
Here we will assume that $\mathrm{T}=298 \mathrm{~K}$.
Initial pressure in the balloon: $p=\frac{n R T}{V}$

$$
{ }^{V}=\frac{0.0400 \cdot 0.082 \cdot 298}{0.500}=1.955 \mathrm{~atm}
$$

Taking into account that temperature and pressure indicators remained constant the amount of gas added:

$$
\begin{gathered}
n=\frac{p V}{R T} \\
n_{1}=\frac{1.955 \cdot 1.00}{0.082 \cdot 298}=0.080 \mathrm{~mol}
\end{gathered}
$$

$n_{\text {final }}=n-n_{1}=0.080-0.0400=0.04 \mathrm{~mol}$
Therefore, 0.040 moles of gas was added to balloon.

