Answer on question #60752 – Chemistry – Physical Chemistry **Ouestion:**

Why is concentration multiplied to number of moles?

$$A_xB_y \rightleftharpoons xA^{y+} + yB^{x-}$$

	A_xB_y	\mathbf{A}^{y+}	\mathbf{B}^{x-}
initial concentration	C	0	0
concentration at equilibrium	C(1-lpha)	$Cx\alpha$	$Cy\alpha$

total number of moles at equilibrium
$$= Cx\alpha + Cy\alpha + C(1-\alpha)$$

 $= C[1-\alpha+x\alpha+y\alpha]$
 $= C[1+\alpha(x+y-1)]$

Answer:

X or Y here are not the number of moles. They are coefficients in the equation of dissotiation

For example $BaCl_2->Ba^{2+}+2Cl^{-}$

From 1 mol of BaCl₂ 2 mol of Cl⁻ is produced.

If concentration BaCl₂ is 1 mol/l (or C), then concentration of Cl⁻ is 2 mol/l (or 2C)

For AxBy – concentration of A^{y+} is C^*x , concentration of B^{x-} is C^*y

But this example is correct if dissiociation of electrolyte is complete. (arrow - > in equation)

But if the dissociation of electrolyte is not complete, we can use parameter α – degree of dissociation.

Degree of dissociation is the fraction of a mole of the reactant that underwent dissociation

For example, imagine that BaCl₂ is not dissociated completely and degree of dissociation is 50%.

 $BaCl_2 \leftrightarrow Ba^{2+} + 2Cl^{-}$

From 1 mol of BaCl₂ only 0,5 mol (α *C) is dissociated.

As result 1 mol of Cl⁻ is produced (or $2*\alpha*C$)

For AxBy – concentration of $A^{y\scriptscriptstyle +}$ is C^*x^* $\alpha,$ concentration of $B^{x\scriptscriptstyle -}$ is C^*y^* α