Answer on Question \# 60267-Chemistry - Physical Chemistry

What is the Doppler-shifted wavelength of a red (680 nm) traffic light approached at $60 \mathrm{~km} / \mathrm{h}$?

Solution

The wavelength change $(\Delta \lambda)$ is related to velocity (v) by the following formula:
$\frac{\Delta \lambda}{\lambda_{0}}=\frac{v}{c}$,
where c is the speed of light, $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$;
Converting speed to SI units: $60 \mathrm{~km} / \mathrm{h}=16.67 \mathrm{~m} / \mathrm{s}$;
Converting wavelength to SI units: $680 \mathrm{~nm}=6.8 \times 10^{-7} \mathrm{~m}$;
$\frac{\lambda-\lambda_{0}}{\lambda_{0}}=\frac{v}{c}$,
$\lambda-\lambda_{0}=\lambda_{0} \frac{v}{c}$,
$\lambda=\lambda_{0} \frac{v}{c}+\lambda_{0}$,
$\lambda=6.8 \times 10^{-7} \frac{16.67}{3 \times 10^{8}}+6.8 \times 10^{-7}=680.000038 \mathrm{~nm}$.

