Answer on the question \#60144, Chemistry / Other

Question:

What volume of 0.117 M HCl is needed to neutralize 28.67 mL of $0.137 \mathrm{M} \mathrm{Ca}(\mathrm{OH}) 2$?

Solution:

Let's write the reaction equation:

$$
2 \mathrm{HCl}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{CaCl}_{2}
$$

One can see that 2 moles of hydrochloric acid reacts with 1 mole of calcium hydroxide:

$$
\frac{n(\mathrm{HCl})}{2}=n\left(\mathrm{Ca}(\mathrm{OH})_{2}\right)
$$

The volume of HCl is equal to the ratio of the number of the moles and concentration:

$$
V(\mathrm{HCl})=\frac{n(\mathrm{HCl})}{c(\mathrm{HCl})}=\frac{2 \cdot n\left(\mathrm{Ca}(\mathrm{OH})_{2}\right)}{c(\mathrm{HCl})} .
$$

In its turn, the number of the moles of calcium hydroxide is the product of its volume and molar concentration:

$$
\begin{gathered}
n\left(\mathrm{Ca}(\mathrm{OH})_{2}\right)=V\left(\mathrm{Ca}(\mathrm{OH})_{2}\right) \cdot c\left(\mathrm{Ca}(\mathrm{OH})_{2}\right)=28.67 \cdot 10^{-3}(\mathrm{~L}) \cdot 0.137\left(\mathrm{~mol} \mathrm{~L}^{-1}\right), \\
n\left(\mathrm{Ca}(\mathrm{OH})_{2}\right)=3.928 \cdot 10^{-3}(\mathrm{~mol}) .
\end{gathered}
$$

And finally, the volume of hydrochloric acid is:

$$
V(H C l)=\frac{2 \cdot 3.928 \cdot 10^{-3}(\mathrm{~mol})}{0.117\left(\mathrm{~mol} \mathrm{~L}^{-1}\right)}=67.2 \cdot 10^{-3} \mathrm{~L}, \text { or } 67.14 \mathrm{~mL}
$$

Answer: 67.14 mL

