Answer on the question \#59815, Chemistry / Other

Question:

Calculate the number of pounds of CO 2 released into the atmosphere when a 21.0-gallon tank of gasoline is burned in an automobile engine. Assume that gasoline is primarily octane, C 8 H 18 , and that the density of gasoline is $0.692 \mathrm{~g} \cdot \mathrm{~mL}-1$ (this assumption ignores additives).
Also assume complete combustion.

Solution:

Reaction equation of gasoline with oxygen is:

$$
2 \mathrm{C}_{8} \mathrm{H}_{18}+25 \mathrm{O}_{2}=16 \mathrm{CO}_{2}+18 \mathrm{H}_{2} \mathrm{O}
$$

Then, number of the moles of octane and CO_{2} relate as:

$$
n\left(C_{8} H_{18}\right)=\frac{n\left(\mathrm{CO}_{2}\right)}{8}
$$

To calculate the number of the moles of octane, we divide its mass by the molar mass:

$$
\begin{gathered}
n\left(C_{8} H_{18}\right)=\frac{m\left(C_{8} H_{18}\right)}{M\left(C_{8} H_{18}\right)} \\
m\left(C_{8} H_{18}\right)=V \cdot \rho=4.55 \cdot 21(L) \cdot 0.692 \cdot 10^{3}\left(\mathrm{~g} \cdot \mathrm{~L}^{-1}\right)=6.612 \cdot 10^{4} \mathrm{~g} \\
n\left(C_{8} H_{18}\right)=\frac{6.612 \cdot 10^{4} \mathrm{~g}}{114.23 \mathrm{~g} \cdot \mathrm{~mol}^{-1}}=5.79 \cdot 10^{2} \mathrm{~mol}
\end{gathered}
$$

Then, mass of CO_{2} is the product of its molar mass and number of the moles:

$$
\begin{gathered}
m\left(\mathrm{CO}_{2}\right)=n\left(\mathrm{CO}_{2}\right) \cdot M\left(\mathrm{CO}_{2}\right)=8 \cdot 5.79 \cdot 10^{2}(\mathrm{~mol}) \cdot 44.01\left(\mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)=2.04 \cdot 10^{5} \mathrm{~g} \\
m\left(\mathrm{CO}_{2}\right)=0.454\left(\mathrm{lb} \cdot \mathrm{~kg}^{-1}\right) \cdot 2.04 \cdot 10^{2}(\mathrm{~kg})=92.5 \mathrm{lb}
\end{gathered}
$$

Answer: 92.5 lb

