Answer on the question \#56249-Chemistry - General chemistry

Question:

Calculate how many grams of heavy water are required to produce 345.0 mg of ND3(g). The mass of deuterium, D , is $2.014 \mathrm{~g} / \mathrm{mol}$.
Li3N+3H2O......NH3+3LiOH
Li3N+3D2O...NH3+3LiOH

Solution:

Li3N+3D2O...ND3+3LiOD
One can see from the reaction equation that the number of the moles of heavy water and $N D_{3}$ relate as:

$$
\frac{n\left(D_{2} O\right)}{3}=n\left(N D_{3}\right)
$$

The number of the moles of $N D_{3}$ is the ratio of the mass and the molar mass:

$$
n\left(N D_{3}\right)=\frac{m}{M}=\frac{345.0}{(14.007+2.014 \cdot 3)}=17.21 \mathrm{~mol}
$$

The number of the moles of $D_{2} O$ is:

$$
n\left(D_{2} O\right)=3 \cdot n\left(N D_{3}\right)=3 \cdot 17.21=51.62 \mathrm{~mol}
$$

Then, the mass of heavy water required to produce 345.0 g of $N D_{3}$ is:

$$
m\left(D_{2} O\right)=n\left(D_{2} O\right) \cdot M\left(D_{2} O\right)=51.62 \cdot(2.014 \cdot 2+15.999)=1033.8 \mathrm{~g}
$$

Answer: 1033.8 g

