Answer on Question \#56047 - Chemistry - General chemistry

Question:

Calculate the final temperature, in degrees Celsius, ${ }^{\circ} \mathrm{C}$, for each of the following with n and V constant.
Part A
A sample of helium gas with a pressure of 250 torr at $0^{\circ} \mathrm{C}$ is heated to give a pressure of 2500 torr.
Express your answer to two significant figures and include the appropriate units.
$\mathrm{T}=$???
Part B
A sample of air at $21{ }^{\circ} \mathrm{C}$ and 800 mmHg is cooled to give a pressure of 610 mmHg .
Express your answer to two significant figures and include the appropriate units.
$\mathrm{T}=$? ??

Solution:

Part A
For the isochoric process, the following ratio is valid:
$\frac{p_{1}}{T_{1}}=\frac{p_{2}}{T_{2}}$
Then, if the initial conditions are $273.15 \mathrm{~K}\left(0^{\circ} \mathrm{C}\right)$ and 250 torr, the final conditions will be T 2 and 2500 torr.

$$
T_{2}=\frac{p_{2} T_{1}}{p_{1}}=\frac{2500 \cdot 273.15}{250}=2.7 \cdot 10^{3} \mathrm{~K} \text {, or } 2.5 \cdot 10^{3{ }^{\circ} \mathrm{C}}
$$

Part B
With the same ratio used for the part A p_{2} is $610 \mathrm{~mm} \mathrm{Hg}, T_{1}$ is $294.15 \mathrm{~K}, p_{1}$ is 800 mm Hg :

$$
T_{2}=\frac{p_{2} T_{1}}{p_{1}}=\frac{610 \cdot 294.15}{800}=2.2 \cdot 10^{2} \mathrm{~K}, \text { or }-49^{\circ} \mathrm{C}
$$

Answer: Part A $2.5^{*} 10^{3}{ }^{\circ} \mathrm{C}$, Part B-49 ${ }^{\circ} \mathrm{C}$

