Answer on Question #56036 - Chemistry - Physical Chemistry

Solution:

According to Arrhenius equation:

$$k = Ae^{\frac{-E_z}{RT}}$$

Accept that E_{a1} –energy of activation of uncatalytic reaction with rate constant k_1 , $E_{a2} = E_{a1} - 0.4$ (Kcal) –energy of activation of catalytic reaction with rate constant k_2 .

Then
$$\frac{k_2}{k_1} = Ae^{\frac{-E_{a2}}{RT}} / Ae^{\frac{-E_{a1}}{RT}} = e^{\frac{E_{a1}-E_{a2}}{RT}}$$

 $e=1.9872cal\cdot K^{-1}/Mol^{-1}$, $E_{a1}-E_{a2}=0.4$ Kcal=400 cal

e=1.98/2cai-K⁻¹/Mol⁻¹

$$\frac{k_2}{k_1} = e^{\frac{400}{400^{\circ}1.987}} = 1.654$$

Answer: (1) rate increased by 1.65 times