Answer on Question \#55950 - Chemistry - General chemistry

Question:

You add 100.0 g of water at 55.0 C to 100.0 g of ice at 0.00 C . Some of the ice melts and cools the water to 0.00 C . When thermal equilibrium is established at 0.00 C , what mass of ice has melted?

Delta H of fusion for water is $333 \mathrm{~J} / \mathrm{g}$.
What is the wavelength of light in nm with an energy of $486 \mathrm{~kJ} / \mathrm{mol}$? Is it in the visible region?

Answer:

Cooling of water heat release:
$\mathrm{Q}=\mathrm{cm} \Delta \mathrm{T}=4.20 \mathrm{~J} /(\mathrm{g} \mathrm{K})^{*} 100.0 \mathrm{~g}^{*}\left(55.0^{\circ} \mathrm{C}-0.00^{\circ} \mathrm{C}\right)=23100 \mathrm{~J}$
Ice melting heat absorption:
$\mathrm{Q}=\mathrm{cm} ; \mathrm{m}=\mathrm{Q} / \mathrm{c}=23100 \mathrm{~J} / 333 \mathrm{~J} / \mathrm{g}=69.4 \mathrm{~g}$

$$
\frac{E}{N_{A}}=\frac{h c}{\lambda} ; \lambda=\frac{h c N_{A}}{E}=\frac{1.98644568 \times 10^{-25} \mathrm{~J} \mathrm{~m} \times 6.022 \times 10^{23} \mathrm{~mol}^{-1}}{486 \mathrm{~kJ} / \mathrm{mol}}=246 \mathrm{~nm}
$$

No, it's not.

