## Answer on the question \#55936-Chemistry - General chemistry

## Question:

The following reaction has an activation energy of $262 \mathrm{~kJ} / \mathrm{mol}$.
$\mathrm{C}_{4} \mathrm{H}_{8}(\mathrm{~g})--->2 \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$

At 600.0 K the rate constant is $6.1^{*} 10^{\wedge}-8 s^{\wedge}-1$. What is the value of the rate constant at 750.0 K ?

## Solution:

According to Arrhenius' law, the rate constant is dependent on the activation energy and temperature as follows:

$$
k=A e^{-\frac{E_{a}}{R T}}
$$

Then, the rate constants ratio at different temperature will be:

$$
\frac{k_{1}}{k_{2}}=e^{-\frac{E_{a}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)}
$$

Let's say $k_{1}$ is the rate constant at 750 K and $k_{2}$ is the rate constant at $600 \mathrm{~K} . E_{a}$ is the activation energy, $6.1 * 10^{-8} \mathrm{~s}^{-1}$ hence:

$$
k_{1}=k_{2} e^{-\frac{E_{a}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)}=6.1 \cdot 10^{-8} \cdot e^{-\frac{262 \cdot 10^{3}}{8.314} \cdot\left(\frac{1}{750}-\frac{1}{600}\right)}=2.2 \cdot 10^{-3} \mathrm{~s}^{-1}
$$

Answer: $2.2 * 10^{-3} \mathrm{~s}^{-1}$

