Answer on the question \#55802 - Chemistry - General chemistry

Question:

Calculate the volume of 17.0 g of carbon monoxide at STP.

Solution:

According to what is established by IUPAC, STP conditions are 273.15 K and $100,000 \mathrm{~Pa}$. Assuming ideal gas behavior, the volume of the gas is:

$$
V=\frac{n R T}{p}
$$

where n is the number of the moles, R is the ideal gas constant, T is the temperature and p is the pressure. The number of the moles of carbon monoxide is:

$$
n(C O)=\frac{m(C O)}{M(C O)}=\frac{17.0 \mathrm{~g}}{28.01 \mathrm{~g} \mathrm{~mol}^{-1}}=0.61 \mathrm{~mol}
$$

Then, the volume is:

$$
V=\frac{0.61 \mathrm{~mol} \cdot 8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \cdot 273.15 \mathrm{~K}}{100,000 \mathrm{~Pa}}=1.38 \cdot 10^{-2} \mathrm{~m}^{3}, \text { or } 13.8 \mathrm{~L}
$$

Answer: $1.38 \cdot 10^{-2} \mathrm{~m}^{3}$, or 13.8 L

