Answer on the question \#55801 - Chemistry - General chemistry

Question:

what temperature (c) of 1.75 g of O_{2} gas occupying 3.7 L at 1.00 atm ?

Solution:

Assuming the ideal gas behavior, the temperature can be calculated, using the ideal gas law:
$p V=n R T$
where p is the pressure, V is the volume, n is the number of the moles, R is the ideal gas constant and T is the temperature. Deriving the temperature from this equation, we have:
$T=\frac{p V}{n R}$.
The volume is given to be $V=3.7 \cdot 10^{-3} \mathrm{~m}^{3}$. Pressure is 1 atm and that is 101.325 kPa . The ideal gas constant is $8.314 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$. The number of the moles can be calculated from the mass, using the molar mass:
$n=\frac{m\left(O_{2}\right)}{M\left(O_{2}\right)}=\frac{1.75(\mathrm{~g})}{16.0\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)}=0.109 \mathrm{~mol}$
Then, the temperature in the system is:
$T=\frac{101325(\mathrm{~Pa}) \cdot 3.7 \cdot 10^{-3}\left(\mathrm{~m}^{3}\right)}{0.109(\mathrm{~mol}) \cdot 8.314\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)}=412.3 \mathrm{~K}$
Answer: 412.3 K

