Answer on the question \#55732-Chemistry - Physical Chemistry

Question:

a sample of lead weighing 1.05 g was dissolved in a small quantity of nitric acid to produce aqueous solution of $\mathrm{Pb} 2+$ and $\mathrm{Ag}+$ (which is present as impurity).the volume of the solution was increased to 300 ml by adding water, a pure silver electrode was immersed in the solution and the potential difference between this electrode and the standered electrode was found to be 0.503 V at 25 degree celcius. what was the \%of Ag in the lead metal? Given E0 ($\mathrm{Ag}+/ \mathrm{Ag}$) $=0.799 \mathrm{v}$.neglecting amount of $\mathrm{Ag}+$ converted to Ag .

Solution:

The mass fraction of silver is:

$$
\omega=\frac{m(A g)}{m(\text { sample })},
$$

where m (sample) is 1.05 g . Let's find the concentration of silver in solution. For this, we can use Nernst equation:

$$
\begin{gathered}
E=E^{0}+0.0591 \cdot \ln \left[A g^{+}\right] \\
0.503=0.799+0.0591 \cdot \ln \left[\mathrm{Ag}^{+}\right] \\
\ln \left[\mathrm{Ag}^{+}\right]=-5.01 \\
{\left[\mathrm{Ag}^{+}\right]=6.68 \cdot 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}}
\end{gathered}
$$

The number of the moles of Ag^{+}in 300 ml solution is:

$$
n(\mathrm{Ag})=\left[\mathrm{Ag}^{+}\right] \cdot V=6.68 \cdot 10^{-3} \cdot 300 \cdot 10^{-3}=2.00 \cdot 10^{-3} \mathrm{~mol}
$$

The mass of the silver is:

$$
m(A g)=n(A g) \cdot M(A g)=2.00 \cdot 10^{-3} \cdot 107.8682=0.216 g
$$

Mass fraction of the silver is:

$$
\omega=\frac{0.216}{1.05}=0.21, \text { or } 21 \%
$$

Answer: 21\% of Ag

