Answer on Question\#55666 - Chemistry - General Chemistry

Question:

For each of the following reactions, calculate the grams of indicated product when 16.9 g of the first reactant and 10.4 g of the second reactant is used:
$\mathrm{Al}_{2} \mathrm{~S}_{3}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow 2 \mathrm{Al}(\mathrm{OH})_{3}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})\left(\mathrm{Al}(\mathrm{OH})_{3}\right)$

Solution:

$m\left(\mathrm{Al}_{2} \mathrm{~S}_{3}\right)=16.9 \mathrm{~g}$;
$\mathrm{m}\left(\mathrm{H}_{2} \mathrm{O}\right)=10.4 \mathrm{~g}$;
$\mathrm{m}\left(\mathrm{Al}(\mathrm{OH})_{3}\right)-$?
$\mathrm{M}\left(\mathrm{Al}_{2} \mathrm{~S}_{3}\right)=150 \mathrm{~g} / \mathrm{mol} ;$
$\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)=18 \mathrm{~g} / \mathrm{mol} ;$
$\mathrm{n}=\frac{\mathrm{m}}{\mathrm{M}}$;
n - the amount of substance (mol);
m - the mass (g);
$<-$ the molar mass $\left(\mathrm{g}^{*} \mathrm{~mol}^{-1}\right)$;
According to the equation $n\left(\mathrm{Al}_{2} \mathrm{~S}_{3}\right): n\left(\mathrm{H}_{2} \mathrm{O}\right)=1: 6$;
$\mathrm{n}\left(\mathrm{Al}_{2} \mathrm{~S}_{3}\right)=0.113 \mathrm{~mol} ;$
$\mathrm{n}\left(\mathrm{H}_{2} \mathrm{O}\right)=0.578 \mathrm{~mol}$;
$n\left(\mathrm{Al}_{2} \mathrm{~S}_{3}\right): \mathrm{n}\left(\mathrm{H}_{2} \mathrm{O}\right)=1: 5.1$;
In this case, we have an excess of $\mathrm{Al}_{2} \mathrm{~S}_{3}$. We need 12.168 g of $\mathrm{H}_{2} \mathrm{O}$ to react with $16.9 \mathrm{~g} \mathrm{of}^{\mathrm{Al}} \mathrm{I}_{2} \mathrm{~S}_{3}$. In this reaction, $\mathrm{H}_{2} \mathrm{O}$ is a limiting reactant.

According to the equation: $n\left(\mathrm{H}_{2} \mathrm{O}\right): \mathrm{n}\left(\mathrm{Al}(\mathrm{OH})_{3}\right)=6: 2=3: 1$;
$\mathrm{n}\left(\mathrm{Al}(\mathrm{OH})_{3}\right)=0.193 \mathrm{~mol} ;$
$\mathrm{M}\left(\mathrm{Al}(\mathrm{OH})_{3}\right)=78 \mathrm{~g} / \mathrm{mol} ;$
$m=n M ;$
$\mathrm{m}\left(\mathrm{Al}(\mathrm{OH})_{3}\right)=15.022 \mathrm{~g}$;
Answer: 15.022 g.

