Answer on Question \#55665 - Chemistry - General chemistry

Question:

For the following reaction, calculate the grams of indicated product when 16.9 g of the first reactant and 10.4 g of the second reactant is used:
$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

Answer:

$v=\frac{m}{M} \quad m=M v$
$\mathrm{M}\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)=159.6 \mathrm{~g} / \mathrm{mol}$
M $\left(\mathrm{H}_{2}\right)=2.0 \mathrm{~g} / \mathrm{mol}$
$v\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)=\frac{16.9}{159.6}=0.1 \mathrm{~mol}$
$v\left(H_{2}\right)=\frac{10.4}{2.0}=5.2 \mathrm{~mol}$
$\mathrm{Fe}_{2} \mathrm{O}_{3}$ is a limiting reactant in this case. So that further calculations must be done according to the $\mathrm{Fe}_{2} \mathrm{O}_{3}$ amount of moles available:

$$
\begin{aligned}
& v(\mathrm{Fe})=2 \cdot v\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right) \\
& v(\mathrm{Fe})=2 \cdot 0.1=0.2 \mathrm{~mol} \\
& \mathrm{M}(\mathrm{Fe})=55.8 \mathrm{~g} / \mathrm{mol} \\
& \mathrm{~m}(\mathrm{Fe})=0.2 \cdot 55.8=11.2 \mathrm{~g}
\end{aligned}
$$

