Answer on Question \#55664 - Chemistry - General chemistry

Question

For each of the following reactions, calculate the grams of indicated product when 16.9 g of the first reactant and 10.4 g of the second reactant is used:
$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})\left(\mathrm{H}_{2} \mathrm{O}\right)$

Answer:

Number of moles of the reactants are:

$$
\begin{gathered}
n\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)=\frac{m\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)}{M\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)}=\frac{16.9}{159.69}=0.106 \mathrm{~mol} \\
n\left(\mathrm{H}_{2}\right)= \\
\frac{m\left(\mathrm{H}_{2}\right)}{M\left(\mathrm{H}_{2}\right)}=\frac{10.4}{2.016}=5.159 \mathrm{~mol}
\end{gathered}
$$

Then we make a proportion:
1 mole of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ reacts with 3 moles of H_{2}
0.106 moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}-x$ moles of H_{2}
$x=\frac{0.106 \cdot 3}{1}=0.318$ moles of H_{2} should react with 0.106 moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}$
There are 5.159 moles of hydrogen - it's too much, therefore $\mathrm{Fe}_{2} \mathrm{O}_{3}$ is the limiting reactant.

We need to make another proportion to calculate the mass of $\mathrm{H}_{2} \mathrm{O}$ formed:
1 mole of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ produces 3 moles of $\mathrm{H}_{2} \mathrm{O}$
0.106 moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}-x$ moles of $\mathrm{H}_{2} \mathrm{O}$
$x=\frac{0.106 \cdot 3}{3}=0.106$ moles of $\mathrm{H}_{2} \mathrm{O}$ is formed
The mass of $\mathrm{H}_{2} \mathrm{O}$ is:

$$
m\left(\mathrm{H}_{2} \mathrm{O}\right)=n\left(\mathrm{H}_{2} \mathrm{O}\right) \cdot M\left(\mathrm{H}_{2} \mathrm{O}\right)=0.106 \cdot 18=0.848 \mathrm{~g}
$$

Answer: 0.848 g of $\mathrm{H}_{2} \mathrm{O}$

