Answer on the question \#55663-Chemistry - General chemistry

Question:

For each of the following reactions, calculate the grams of indicated product when 16.9 g of the first reactant and 10.4 g of the second reactant is used:
$4 \mathrm{Li}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Li}_{2} \mathrm{O}(\mathrm{s})\left(\mathrm{Li}_{2} \mathrm{O}\right)$

Solution:

Let's calculate the number of the moles for Li and Oxygen that are put into reaction:

$$
\begin{gathered}
n(L i)=\frac{m}{M}=\frac{16.9}{6.94}=2.44 \mathrm{~mol} \\
n\left(O_{2}\right)=\frac{m}{M}=\frac{10.4}{32}=0.325 \mathrm{~mol}
\end{gathered}
$$

As with the reaction equation 4 moles of Li reacts with 1 mole of Oxygen, one can note that Li is in excess: $\frac{n(L i)}{4}=\frac{2.44}{4}=0.61 \mathrm{~mol}$.

If we assume, that all the oxygen will react and the yield of reaction is 100%, then the number of the moles of $\mathrm{Li}_{2} \mathrm{O}$ is:

$$
n\left(L i_{2} O\right)=2 \cdot n\left(O_{2}\right)=2 \cdot 0.325=0.65 \mathrm{~mol}
$$

Then the mass of $\mathrm{Li}_{2} \mathrm{O}$ is:

$$
m\left(L i_{2} O\right)=n\left(L i_{2} O\right) \cdot M\left(L i_{2} O\right)=0.65 \cdot 29.88=19.4 \mathrm{~g}
$$

Answer: 19.4 g of $\mathrm{Li}_{2} \mathrm{O}$ is produced

