Answer on Question \#55596 - Chemistry - General Chemistry

Question:

If you have 1.512 g of bi3+ how do you calculate the mass of BiPO4 obtained from 50 ml of this solution.

Solution:

$m\left(\mathrm{Bi}^{3+}\right)=1.512 \mathrm{~g}$;
V (the solution) $=50 \mathrm{ml}$;
$\mathrm{m}(\mathrm{BiPO} 4)-$?
$\operatorname{Ar}(\mathrm{Bi})=209 \mathrm{~g}^{*} \mathrm{~mol}^{-1}$;
$\mathrm{M}(\mathrm{BiPO} 4)=304 \mathrm{~g}^{*} \mathrm{~mol}^{-1}$;
$\mathrm{n}=\frac{\mathrm{m}}{\mathrm{M}}$;
n - the amount of substance/mole (mol);
m - the mass (g);
M - the molar mass $\left(\mathrm{g}^{*} \mathrm{~mol}^{-1}\right)$;
$n\left(\mathrm{Bi}^{3+}\right)=0.007 \mathrm{~mol} ;$
One molecule of BiPO 4 contains one Bi^{3+} ion.
$n\left(\mathrm{Bi}^{3+}\right): n(\mathrm{BiPO} 4)=1: 1 ;$
$\mathrm{n}(\mathrm{BiPO} 4)=\mathrm{n}\left(\mathrm{Bi}^{3+}\right)=0.007 \mathrm{~mol} ;$
$m=n * M$;
$m($ BiPO4 $)=2.128 \mathrm{~g}$;
Answer: $2.128 \mathrm{~g} ;$

Notice: According to the objective, we have 1.512 g of Bi^{3+} to produce BiPO4. If all amount of Bi^{3+} were wasted during the reaction, we would receive 2.128 g of BiPO 4 .

If the objective means that, we have 1.512 g of Bi^{3+} in 1 L of the solution; then we have to calculate the molar concentration of Bi^{3+} in the solution.
$\mathrm{C}=\frac{\mathrm{n}}{\mathrm{V}}$;
C - the molar concentration (M);
n - the amount of Bi^{3+} ions. (0.007 mol);

V - the volume of the solution (1 L);
$\mathrm{C}=0.007 \mathrm{M}$;
Then we can calculate the number of moles Bi^{3+} that were used during the reaction:
V1 = $0.05 \mathrm{~L} ;$
$\mathrm{n}\left(\mathrm{Bi}^{3+}\right)=\mathrm{C}^{*} \mathrm{~V} 1$;
$\mathrm{n}\left(\mathrm{Bi}^{3+}\right)=3.5^{*} 10^{-4} \mathrm{~mol} ;$
Then $n($ BiPO4 $)=3.5^{*} 10^{-4} \mathrm{~mol}$;
$m($ BiPO4 $)=M(B i P O 4) * n(B i P O 4) ;$
$\underline{m}($ BiPO4 $)=0.1064 \mathrm{~g}$;

