Answer on Question \#55590-Chemistry - General chemistry

Question:

A 1.0 mole sample of an ideal monatomic gas at $10.0^{\circ} \mathrm{C}$ undergoes a reversible adiabatic expansion from 2.94 to 3.68 L . Determine $\Delta \mathrm{T}, \Delta \mathrm{U}, \Delta \mathrm{S}, \mathrm{w}$, and q .

Solution:

For a monatomic ideal gas :

$$
C_{p}=\frac{5}{2} R
$$

$C_{p}=\frac{5}{2} 8,314=20.785$
$C_{v}=\frac{3}{2} R$
$C_{v}=\frac{3}{2} 8,314=12,471$
$k=\frac{C_{p}}{C_{v}}$
$k=1,667$
Since expansion is adiabatic :
$q=0$
$\mathrm{Q}=0$
For ideal gas with adiabatic and reversible process and constant specific heats, you have the following :

$$
\begin{gathered}
P V^{k}=P_{1} V_{1}^{1.667} \\
T V^{k-1}=T_{1} V_{1}^{0.667} \\
T_{2}=T_{1} * \frac{V_{1}^{0,667}}{V_{2}} \\
T_{2}=243.64 \\
\Delta U=C_{v}\left(T_{2}-T_{1}\right) \\
\Delta U=12,471(243.64-283) \\
\Delta \boldsymbol{U}=-\mathbf{4 9 0 , 8 6} \\
\Delta \boldsymbol{T}=-\mathbf{3 9 . 3 6} \\
w=q-\Delta U \\
w=0+39,36 \\
\boldsymbol{w}=\mathbf{3 9 , 3 6} \\
\Delta \boldsymbol{S}=\mathbf{0}
\end{gathered}
$$

