Answer on Question \#55545-Chemistry - General chemistry

Question:

1. If the fuel has a density of $0.782 \mathrm{~g} / \mathrm{ml}$, how many grams of $\mathrm{H}_{2} \mathrm{O}$ and CO_{2} is produced in reducing 500 milliliters of the fuel?
2. At STP, find the volume of CO 2 that are produced in question number 1 .

Solution:

1. Fuel with density of $0.782 \mathrm{~g} / \mathrm{ml}$ has to be a gasoline. It is known that the main component
of gasoline is octane $\mathrm{C}_{8} \mathrm{H}_{18}$. Based on this, we can estimate the following burning reaction:
$2 \mathrm{C}_{8} \mathrm{H}_{18}+25 \mathrm{O}_{2} \rightarrow 16 \mathrm{CO}_{2}+18 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{m}_{\mathrm{C} 8 \mathrm{H} 18}=0.782 \mathrm{~g} / \mathrm{ml} \times 500 \mathrm{ml}=391 \mathrm{~g}$
$\mathrm{n}_{\mathrm{C} 8 \mathrm{H} 18}=391 \mathrm{~g} / 114.224 \mathrm{~g} / \mathrm{mol}=3.423 \mathrm{~mol}$
$\mathrm{m}_{\mathrm{CO} 2}=8 \mathrm{n}_{\mathrm{C8H} 18} \times \mathrm{M}_{\mathrm{CO} 2}=27.385 \mathrm{~mol} \times 44 \mathrm{~g} / \mathrm{mol}=1205 \mathrm{~g}$
$\mathrm{m}_{\mathrm{H} 2 \mathrm{O}}=9 \mathrm{n}_{\mathrm{C} 8 \mathrm{H} 18} \times \mathrm{M}_{\mathrm{H} 2 \mathrm{O}}=30.808 \mathrm{~mol} \times 18 \mathrm{~g} / \mathrm{mol}=555 \mathrm{~g}$
2. $\mathrm{V}_{\mathrm{CO} 2}=\mathrm{V}_{\mathrm{m}} \times 8 \mathrm{nc}_{\mathrm{CH} 18}=27.385 \mathrm{~mol} \times 22.4 \mathrm{~L} / \mathrm{mol}=613.4 \mathrm{~L}$
